Putnam Club Problem Sheet - February 21

Warm-up

Putnam 2005 B1. Find a nonzero polynomial P(x,y) such that $P(\lfloor a \rfloor, \lfloor 2a \rfloor) = 0$ for all real numbers a. (Note: $|\nu|$ is the greatest integer less than or equal to ν .)

Putnam 2007 B1. Let f be a nonconstant polynomial with positive integer coefficients. Prove that if n is a positive integer, then f(n) divides f(f(n) + 1) if and only if n = 1.

Putnam 2018 B2. Let n be a positive integer, and let $f_n(z) = n + (n-1)z + (n-2)z^2 + \cdots + z^{n-1}$. Prove that f_n has no roots in the closed unit disk $\{z \in \mathbb{C} : |z| \le 1\}$.

Harder

Putnam 2005 A3. Let p(z) be a polynomial of degree n all of whose zeros have absolute value 1 in the complex plane. Put $g(z) = p(z)/z^{n/2}$. Show that all zeros of g'(z) = 0 have absolute value 1.

Putnam 2007 B4. Let n be a positive integer. Find the number of pairs P, Q of polynomials with real coefficients such that

$$(P(X))^2 + (Q(X))^2 = X^{2n} + 1$$

and $\deg P > \deg Q$.

Putnam 2010 B4. Find all pairs of polynomials p(x) and q(x) with real coefficients for which

$$p(x)q(x+1) - p(x+1)q(x) = 1.$$

Devilish

Putnam 2007 B5. Let k be a positive integer. Prove that there exist polynomials $P_0(n), P_1(n), \ldots, P_{k-1}(n)$ (which may depend on k) such that for any integer n,

$$\left|\frac{n}{k}\right|^k = P_0(n) + P_1(n) \left|\frac{n}{k}\right| + \dots + P_{k-1}(n) \left|\frac{n}{k}\right|^{k-1}.$$

 $(|a| \text{ means the largest integer} \leq a.)$

Putnam 2005 B5. Let $P(x_1,...,x_n)$ denote a polynomial with real coefficients in the variables $x_1,...,x_n$, and suppose that

$$\left(\frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_n^2}\right) P(x_1, \dots, x_n) = 0 \quad \text{(identically)}$$

and that

$$x_1^2 + \cdots + x_n^2$$
 divides $P(x_1, \ldots, x_n)$.

Show that P = 0 identically.

Putnam 2008 A5. Let $n \geq 3$ be an integer. Let f(x) and g(x) be polynomials with real coefficients such that the points $(f(1), g(1)), (f(2), g(2)), \ldots, (f(n), g(n))$ in \mathbb{R}^2 are the vertices of a regular n-gon in counterclockwise order. Prove that at least one of f(x) and g(x) has degree greater than or equal to n-1.