Your Time is Important to Us

Please wait while we check the grammatically of this sentence

Logan Heath

Graduate Logic Seminar
University of Wisconsin-Madison
November 28, 2022



Some Observations

® QOur model of the grammar changes regularly.

® Each revision of the model can be thought of as selecting a new model from
among all possible models.

® New models may resolve some problems and introduce others.

® |t would be nice to know what sort of problems are out there so that we can
spot and avoid them as we revise our model of the grammar.

2/ 14



Our Current Model of the Grammar

The Lexicon
-Syntactic Categories

-Theta Roles

Final Output
-Grammatical Sentences

Output Filters
-EPP

-Case Filter

Base Component
-X’ Rules

Base Filters

1S Transformational Component
-Theta Criterion

-Expletive Insertion
-Binding Principles -Affix Lowering

-T to C movement
-V/Asp to T movement
-DO Insertion
-WH-movement

-A-movement

3/ 14



How Accurate is this Model?

Recall that we have two notions of grammar:
(1) Unconscious knowledge about language that is represented in the mind.
(2) The linguist's hypothesis (model) about the knowledge in (1).

Is something that generates all and only the grammatical sentences a good model
of the unconscious knowledge about language represented in the mind?

4/14



Some Definitions

Definition (Informal)

Call a set of strings of words from the lexicon a language if it is generated by
some grammar.

® A language is said to be computable if there is an algorithm which can
determine whether or not a given string of words from the lexicon is in the
language.

® A language is said to be computably enumerable, or c.e., if there is an
algorithm which generates a list of exactly the sentences of the language.

When a language is computable, then we can build a machine which answers
questions about whether given strings of words are grammatical. When a
language is c.e., we can build a machine which will write a list of exactly the
grammatical sentences.

5/ 14



Computable vs c.e.

Are these things different?

Fact

Every computable language is c.e., but there are c.e. languages which are not
computable.

® \What sort of thing do we get when a language is c.e., but not computable?

® \What sorts of languages do our grammars generate?

6/ 14



Turing Machines

In order to talk more precisely about the sorts of languages our grammars can
generate we need the notion of a Turing machine:

"Turing machine"
'f‘"stgte" s / "gymbol"

. "tape"\' R a - | /"square"

oo O [
L #e[efslo]l [#ToJo]#]AL #5—)

Figure: Bach and Marsh [1987]

7/ 14



Turing Machines

Definition
A Turing machine operates on an infinite sequence of cells, one cell at a time,
consists of a finite number of states ¢1,...,q,, and for each state contains and

executes non-conflicting instructions of the form "if in state ¢; and scanning
symbol &, then

® write symbol 7 in the current cell and go to state g;.”
® move one cell to the right (left) and go to state g;."
® halt.”

We require that at any given point all but finitely many cells be blank and that
the symbols allowed to be written in the cells be from a finite alphabet. We will
usually represent a blank cell with the symbol #.

8/ 14



Definitions Again

It will be enough for us to recognize Turing machines as mathematical
idealizations of computer programs. This being the case, we obtain the following
definitions corresponding to those given earlier for languages:

Definition (Informal)

Let S be a set of strings from a given alphabet.

® S is computable if there is a Turing machine M which correctly answers
"yes” or "no” when asked if a string o is an element of S.

® S is c.e. if there is a Turing machine M which writes a list of exactly the
elements of S.

As before, every computable set is c.e., but not every c.e. set is computable.

9/ 14



The Peters-Ritchie Theorem

Theorem (Peters and Ritchie [1973])

Every c.e. language is generated by some transformational grammar.

Proof (Bach and Marsh [1987]).

Given any Turing machine M, we can construct a transformational grammar
which mimics the computations of M: Represent all stages of all computations of
M as deep structures and define transformations so that they map the DS
representing one stage of a computation of M to the DS representing the next
stage of the computation. Surface structures will then be all the strings which M
computes. Since every Turing machine defines a c.e. set, every c.e. set is
generated by some transformational grammar. Taking lexical categories to be the
finite alphabet over which our computations occur, we see that every c.e.
language must be generated by some transformational grammar. ]

10/ 14



Deep Structures for Computations

Example

The DS for a stage of a computation where our machine is in state ¢; and
scanning symbol o would have something like the following as a subtree:

S
g

0 ¢——— Scanned Symbol
/\

Q #
Q/\# ’\
\ 1 # symbols
Q
B/\# Boundary Symbol

11/ 14



Some Confessions

® Having a c.e. language might not be problematic if one thinks that the
human capacity for language is unlike the workings of a Turing machine.

® The Peters-Ritchie Theorem is nearly 50 years old and analyzed
transformational grammars of the sort found in Chomsky's Aspects of the
Theory of Syntax written nearly 20 years beforehand.

® Transformational grammars from at least 40 years ago were capable of
avoiding the conclusions of the Peters-Ritchie Theorem (Berwick [1984]).

12 /14



What's the Point?

A careful mathematical analysis of our theory can
® help us to see when something might be amiss in our theory
® pinpoint what goes wrong in the formalism of an unsatisfactory model

® suggest avenues of linguistic research to aid in the revision of the theory in
an empirically motivated way.

13/ 14



References

Emmon Bach and William Marsh. An elementary proof of the peters-ritchie
theorem. In The Formal Complexity of Natural Language, pages 41-55.
Springer Netherlands, 1987. doi: 10.1007,/978-94-009-3401-6_3.

Robert C. Berwick. Strong generative capacity, weak generative capacity, and
modern linguistic theories. Comput. Linguist., 10(3-4):189-202, jul 1984.
ISSN 0891-2017.

P. S. Peters and R. W. Ritchie. On the generative power of transformational
grammars. Information Sciences, 6:49-83, 1973. doi:
https://doi.org/10.1016/0020-0255(73)90027-3.

14 / 14



	References

