
Mock Putnam Solutions

1. Let f : R→ R be continuous, and suppose that there is some real number a such that
f(f(f(a))) = a. Show that there is some real number b such that f(b) = b.

Solution: Consider g(x) = f(x) − x. If g(x) has a root b, then f(b) = b and we are
done. Suppose for contradiction that it does not. If g(x) takes both positive and negative
values, then by the intermediate value theorem it has a root. Otherwise, g(x) is everywhere
positive or everywhere negative. In the former case, this gives f(x) > x everywhere, so
f(f(f(a))) > f(f(a)) > f(a) > a, contradicting the fact that f(f(f(a))) = a. In the latter
case, we similarly have f(x) < x and thus f(f(f(a))) < a, again a contradiction. In every
case we have a contradiction, so in fact g(x) has a root and thus there is a b with f(b) = b.

2. Let g(n) be the number of ways to write n as the ordered sum of positive integers, at
least one of which is even and at least one of which is odd. Find, with proof, g(11) and g(12).

Solution: It is easiest to calculate g(n) by finding f(n), then number of all such sums,
h(n), the number of such sums composed of only odd integers, and k(n), the number of such
sums composed of only even integers. Then g(n) = f(n)− h(n)− k(n).

We begin by computing f(n). Write n = 1 + 1 + 1 + · · · + 1. Then for each ’+’ in this
sum, we can choose to either leave it or to erase it and add the numbers on either side. Each
way of doing this gives a different ordered sum, and conversely, every ordered sum can be
obtained in this way. There are n− 1 choices, so f(n) = 2n−1.

Next, observe that k(n) = 0 if n is odd. If n is even, then by dividing each term in the
sum by 2, we see that k(n) = f(n

2
) = 2

n
2
−1.

Finally, we consider h(n). Let n > 2 and consider an ordered sum of odd integers adding
to n. There are two cases. For the sums ending in a 1, removing the 1 gives a bijection with
all ordered sums of odd integers adding to n− 1. For the sums ending in an integer greater
than 1, subtracting 2 from the last summand gives a similar bijection with ordered sums of
odd integers adding to n − 2. Hence h(n) = h(n − 1) + h(n − 2). Since h(1) = h(2) = 1,
these h(n) are the Fibonacci numbers.

Thus, g(11) = f(11)−h(11)−k(11) = 1024− 89− 0 = 935, and g(12) = f(12)−h(12)−
k(12) = 2048− 144− 32 = 1872.

3. Let P (x) = x100 + 20x99 + 198x98 + a97x
97 + · · ·+ a1x + 1 be a polynomial, where the

ai (1 ≤ i ≤ 97) are real numbers. Prove that P (x) = 0 has at least one complex root (i.e., a
root of the form a + bi with a, b real numbers and b 6= 0). (VTRMC 2011)
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Solution: Let the roots be ri, for 1 ≤ i ≤ 100. Observe that −20 =
100∑
i=1

ri, as well as

198 =
∑

1≤i<j≤100

rirj. Hence
100∑
i=1

r2i = (−20)2 − 2(198) = 4. Furthermore, we also have that

100∏
i=1

r2i =

(
100∏
i=1

ri

)2

= 1.

Suppose for contradiction that all the roots ri were real. Then their squares r2i would all
be nonnegative. Thus, by the AM-GM (arithmetic mean - geometric mean) inequality, we
have

1 = 100

√√√√ 100∏
i=1

r2i ≤
1

100

100∑
i=1

r2i =
1

25
.

This is a contradiction, so it follows that at least one ri is complex.

4. Find, with proof, the number of ordered pairs of integers (m,n) such that
1

m
+

1

n
=

1

91
.

Solution: Multiply through by 91mn and rearrange to get mn− 91m− 91n = 0. Adding
912 to both sides and factoring, we obtain (m − 91)(n − 91) = 912. So for every solution
(m,n) we have a different ordered pair of integers which multiply to 912. Now 912 = 72 · 132

has exactly 9 positive divisors, so exactly 18 total divisors, and each one corresponds to
exactly one such ordered pair (namely, the one where the chosen divisor is the first term
in the product). Each of these yields an ordered pair (m,n) (given by adding 91 to the
divisor and its complement) satisfying the original equation, provided that neither m nor n
thus obtained is zero. This problem occurs when the chosen divisor is −91, and only then,
so there are exactly 17 solutions (m,n) to the original equation. (It is straightforward to
compute them and check that they work if one so desires.)

5. Find, with proof, all differentiable functions f : R → R with continuous derivative
such that xf(x) = f(x2) holds for all x ∈ R.

Solution: Clearly f(x) = kx for a constant k satisfies the given equation. We will show
that these are all the solutions.

First Solution: Iterate the given equation starting with f(x2n) to obtain that (x2n−1)f(x) =
f(x2n). Taking derivatives on both sides yields

(2n − 1)x2n−2f(x) + x2n−1f ′(x) = 2nx2n−1f ′(x2n).

Rearranging (provided x 6= 0), we get

f(x)− xf ′(x2n) =
1

2n
(f(x)− xf ′(x)).
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Let c > 0, and take xn = 2n
√
c, so that we get

f(xn)− xnf
′(c) =

1

2n
(f(xn)− xnf

′(xn)).

Now xn → 1 as n→∞, so taking the limit of the above equation and using the fact that f
and f ′ are continuous, we obtain that f(1) − f ′(c) = 0. So f ′(x) is constant (and equal to
f(1)) on x > 0. Thus f(x) = xf(1) for positive x. Also, from the original equation, f(0) = 0
and −xf(−x) = f((−x)2) = f(x2) = xf(x), so f(−x) = −f(x) = −xf(1) for x positive.
Hence in fact f(x) = xf(1) for all values of x, as required.

Second Solution: Define g(x) =
f(x)

x
for x 6= 0 and g(0) = f(1). Thus, xg(x) = f(x)

for all x. Since f(x) is continuous, g(x) is continuous except possibly at 0. Now, x2g(x) =
xf(x) = f(x2) = x2g(x2), whence g(x) = g(x2) for x 6= 0. Now for x > 0, define xn = 2n

√
x

and observe that the preceding gives g(x) = g(xn) for all n. Since g is continuous at 1 and
lim
n→∞

xn = 1, this gives that g(x) = g(1) for all x > 0. Additionally, g(0) = f(1) = g(1),

and g(x) = g(x2) = g(1) for negative x as well. So g(x) = g(1) = f(1) is a constant, and
hence f(x) = xg(x) = xg(1) is of the form claimed. (NB: The differentiablity of f(x) was
not required, only its continuity.)
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