MATH 240

Midterm #1 · Section 2

October 10, 2013

NAME:

GRADE

Instructions:

- 1. This Midterm consists of six questions. The total points for each of them collected in the table below.
- 2. Each question must be answered clearly on a **separate sheet of paper**, **ink** and **detail any reasoning used to justify**.
- 3. No notes, books, pagers, cell phones or electronic devices are allowed.
- 4. The duration of this test is **1 hours** and **15 minutes**.

QUESTION	POINTS	SCORE
1	15	
2	20	
3	15	
4	15	
5	15	
6	20	
	TOTAL	

[15 points]

1. Show that $(p \to q) \land (p \to r)$ and $p \to (q \land r)$ are logically equivalent.

Solution: Let us construct the truth table for the given compound propositions. For proposition $(p \to q) \land (p \to r)$ we have:

Table 1. Hutti Table for $(p - r q) \land (p - r r)$								
p	q	r	$p \rightarrow q$	$p \to r$	$(p \to q) \land (p \to r)$			
Т	T	Т	Т	Т	Т			
Т	Т	F	Т	F	F			
Т	F	Т	F	Т	F			
Т	F	F	F	F	F			
F	Т	Т	Т	Т	Т			
F	Т	F	Т	Т	Т			
F	F	Т	Т	Т	Т			
F	F	F	Т	Т	Т			

Table 1: Truth Table for $(p \rightarrow q) \land (p \rightarrow r)$

while for $p \to (q \wedge r)$,

Table 2. Thus Table for $(p \rightarrow q) \land (p \rightarrow r)$							
p	q	r	$q \wedge r$	$p \to (q \wedge r)$			
Т	Т	Т	Т	Т			
Т	Т	F	F	F			
Т	F	Т	F	F			
Т	F	F	F	F			
F	Т	Т	Т	Т			
F	Т	F	F	Т			
F	F	Т	F	Т			
F	F	F	F	Т			

Table 2: Truth Table for $(p \rightarrow q) \land (p \rightarrow r)$

Since they have the same final column in their respective truth tables we conclude that both propositions are logically equivalents.

2. Construct the truth table for the compound propositions

$(a) \ \left[(p \to q) \land (\neg p \to q) \right] \to q.$	[10 points]
(b) $[(p \to q) \land (\neg p \to r)] \to (\neg q \to r).$	[10 points]

Solution:

(a) The truth table in this case is

$[(p + q) \land (p + q)] \neq q$								
p	q	$ \neg p$	$p \rightarrow q$	$\neg p \to q$	$(p \to q) \land (\neg p \to q)$	$\left[(p \to q) \land (\neg p \to q)\right] \to q$		
Т	Т	F	Т	Т	Т	Т		
Т	Т	F	Т	Т	Т	Т		
Т	F	F	F	Т	F	Т		
Т	F	F	F	Т	F	Т		
F	Т	Т	Т	Т	Т	Т		
F	Т	Т	Т	Т	Т	Т		
F	F	Т	Т	F	F	Т		
F	F	Т	Т	F	F	Т		

Table 3: Truth Table for $[(p \rightarrow q) \land (\neg p \rightarrow q)] \rightarrow q$

(*b*) For the second case,

p	q	r	$ \neg p$	$\neg q$	$p \rightarrow q$	$\neg p \to r$	$(p \to q) \land (\neg p \to r)$	$\neg q \rightarrow r$	$\left[(p \to q) \land (\neg p \to r) \right] \to (\neg q \to r)$
Т	T	Т	F	F	Т	Т	T	Т	Т
Т	Т	F	F	F	Т	Т	Т	Т	Т
Т	F	Т	F	Т	F	Т	F	Т	Т
Т	F	F	F	Т	F	Т	F	F	Т
F	Т	Т	Т	F	Т	Т	Т	Т	Т
F	Т	F	Т	F	Т	F	F	Т	Т
F	F	Т	Т	Т	Т	Т	Т	Т	Т
F	F	F	T	Т	Т	F	F	F	Т

Table 4: Truth Table for $[(p \to q) \land (\neg p \to r)] \to (\neg q \to r)$

3. (a) For a given integer d > 1 let A_d : = $\{n \in \mathbb{N} | d \text{ divides } n\}$. What is the least element in $A_2 \cap A_4 \cap A_5$?

(*i*) 2 (*ii*) 10 (*iii*) 20 (*iv*) 40. [8 points]

- (b) Consider the sequence of sets S_1 : = {a}, S_2 : = {b} and recursively defined by $S_i = \{a, b, c\} (S_{i-1} \cup S_{i-2})$. What is the 7th term of this sequence
 - $(i) \{a\} \qquad (ii) \{b\} \qquad (iii) \{c\}? \qquad [7 points]$

Solution:

(a) Clearly

$$A_2 = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20, \dots\}$$
$$A_4 = \{4, 8, 12, 16, 20, \dots\}$$

and

$$A_5 = \{5, 10, 15, 20, \dots\}.$$

Now notice that $20 \in A_2 \cap A_4 \cap A_5$ and that $5, 10, 15 \in A_5$ are the only elements in A_5 smaller that 20 and none of them belong to $A_2 \cap A_4$. Hence, the answer is *(iii)*.

(b) Recursively we have

$$S_{1} = \{a\}$$

$$S_{2} = \{b\}$$

$$S_{3} = \{a, b, c\} - \{a, b\} = \{c\}$$

$$S_{4} = \{a, b, c\} - \{b, c\} = \{a\}$$

$$S_{5} = \{a, b, c\} - \{a, c\} = \{b\}$$

$$S_{6} = \{a, b, c\} - \{a, b\} = \{c\}$$

and

$$S_7 = \{a, b, c\} - \{b, c\} = \{a\}.$$

As we can see, in general

$$S_n = \begin{cases} \{c\} & \text{if} \quad n \equiv 0 \mod 3\\ \{a\} & \text{if} \quad n \equiv 1 \mod 3\\ \{b\} & \text{if} \quad n \equiv 2 \mod 3. \end{cases}$$

- 4. The market value of a car low 10% annually. At the time of purchase its value was \$40,000.
 - (a) Set up the recurrence relation for the current market value after *n* years. [8 points]
 - (b) Find its market price three years later after the first purchase. [7 points]

Solution:

(a) If v_n denotes the market value of the car after *n* years of purchase, then

 $v_{n+1} = v_n - 0.1 \cdot v_n = 0.9 \cdot v_n, \ n = 0, 1, \dots$

according to the assumption where the starting value of the car is $v_0 =$ \$40,000.

(b) After three years, the market value of the car will be

$$v_3 = 0.9v_2 = 0.9^2v_1 = 0.9^3v_0 = 0.9^3 \cdot 40,000 = 0.729 \cdot 40,000 = \$29,160.$$

5. Find a 2×2 matrix A such that

$$A \cdot \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}.$$
 [15 points]

Hint: Solve a system of linear equations.

Solution: Put

$$A = \begin{pmatrix} x & y \\ z & t \end{pmatrix}.$$

Then

$$A \cdot \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} x & 2x+y \\ z & 2z+t \end{pmatrix}$$

Hence, the given equation is equivalent to the system of linear equations

$$\left.\begin{array}{ccc}
x &= 1 \\
2x + y &= 2 \\
z &= 1 \\
2z + t &= 1
\end{array}\right\}$$

whose solution is x = 1, y = 0, z = 1 and t = -1 giving

$$A = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}.$$

[10 points]

6. Prove or give a counterexample

- (a) If a, b, c, m are integers with m > 1 and $ac \equiv bc \mod m$, then $a \equiv b \mod m$. [10 points]
- (b) If n is an odd integer then $n^2 \equiv 1 \mod 8$.

Solution:

(a) This is false in general. For example, if m = 6, a = 2, b = 0 and c = 3 we have

$$2 \cdot 3 = 6 \equiv 0 = 0 \cdot 3 = 0 \mod 6$$

but $2 \not\equiv 0 \mod 6$.

(b) Any odd integer n can be written as $n = 2\kappa + 1$ for some $\kappa \in \mathbb{Z}$ and so $n^2 = 4\kappa^2 + 4\kappa + 1 = 4\kappa(\kappa + 1) + 1$. Now note that since κ and $\kappa + 1$ are consecutive integers, at least one of them must be even. Therefore $\kappa(\kappa + 1) = 2\ell$ is even and hence $n^2 = 8\ell + 1 \equiv 1 \mod 8$.

Remark. Here is another way to solve this question: since the remainder modulo 8 of any odd integer is again odd, it is enough to check that $n^2 \equiv 1 \mod 8$ for n = 1, 3, 5, 7 (which are all possible odd reminders modulo 8). But trivially

$$1^2 = 1 \mod 8$$

 $3^2 = 9 = 1 \mod 8$
 $5^2 = 25 = 1 \mod 8$

and finally

$$7^2 = 49 = 1 \mod 8.$$