
Math 222 - Midterm 1 Solutions

Problem 1

The two only substitutions that actually give you back an easy integral were a trig substitution
(using x = tan θ with θ ∈ (−π

2
, π
2
) or x = cot θ with θ ∈ (0, π)) and a rational substitution (using

x = 1
2
(t− 1

t
) with t > 0).

Any not useful substitution wasn’t worth any partial credit. Also, if you have already shown
a trig substitution the second one wasn’t worth partial credit (since it was not substantially
different).

In the explanation, points were given depending if there were two substantially different substitu-
tions or not and if the explanation described an actual way to finish the integral.

Here the sample of a correct answer:

(a) (6 points) Let x = tan(θ) with θ ∈ (−π
2
, π
2
) (2 pt for recognizing the corect variable, 1 pt for

the bounderies of θ), also dx = sec2(θ)dθ (1 pt for this remark).

Then our integral changes like this:

∫
(x2 + 1)

3
2dx =

∫
(tan2(θ) + 1)

3
2 sec2(θ)dθ =

=

∫
(sec2(θ))

3
2 sec2(θ)dθ =

∫
sec3(θ) sec2(θ)dθ =

∫
sec5(θ)dθ.

(Here putting everything in terms of θ worth 1 pt, use the fact that tan2(θ) + 1 = sec2(θ) worth
1 pt and the correct change of dx worth another, use x = cot(θ) with θ ∈ (0, π) has the same
rubric).

(b) (6 points) Let x = 1
2
(t− 1

t
) with t > 0 (2 pt for stating the right rational substitution [could

lose 1 pt if the use the one with +] and 1 pt for the bound of t [we agreed to give the point even
if the bound was for t ≥ 1]), also dx = 1

2
(1 + 1

t2
)dt (this remark worth 1 pt).

Then our integral changes to:

∫
(x2 + 1)

3
2dx =

∫
((

1

2
(t− 1

t
))2 + 1))

3
2

1

2
(1 +

1

t2
)dt =

1



2

=

∫
((

1

2
(t+

1

t
))2)

3
2

1

2
(1 +

1

t2
)dt =

∫
(
1

2
(t+

1

t
))3

1

2
(1 +

1

t2
)dt.

(Here changing everything in terms of t worth 2 pt and make the right change of dx worth 1
pt).

(c) (3 points) The first point of (c) was only achieved if there were two correct substitutions to
choose between (a trigonometric and a rational). After that either of the choices was acceptable
but it was easy to earn the points with the rational substitution:

Rational Substitution: I would expand (foil) the power of the polynomial to get terms that only
have powers of t (positive or negative) I’ll integrate that and after that come back to x (2 pt for
a description like this, only 1 if the description was vague). [The remaining integral here is very
easy to do!]

Trigonometric Substitution: I’ll use the reduction formula∫
secn(x)dx =

secn−2(x) tan(x)

n− 1
+
n− 2

n− 1

∫
secn−2(x)dx

over the integral two times, at the end I’ll use the fact that∫
sec(x)dx = ln | sec(x) + tan(x)|+ C.

Finally I would go back to x using θ = arctan(x) (2 pt for a description like this, only 1 pt if the
explanation only talks about manipulating trig identities, using integration by parts or using a
reduction formula).
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Problem 2: (10 points)

2 points were awarded for stating a valid trigonometric identity. You needed to write it out
explicitly.
Ex: cos2(x) = 1− sin2(x).

Writing an integral where the identity is applicable was worth 3 points.

Ex:

∫
sin2(x) cos3(x)dx.

Finally, actually using the trigonometric identity to solve the integral was worth 5 points. Full
points were awarded for using the identity you stated, showing work, and writing the integral
correctly.
Ex: ∫

sin2(x) cos3(x)dx =

∫
sin2(x) cos2(x) cos(x)dx

=

∫
sin2(x)(1− sin2(x)) cos(x)dx

=

∫
(sin2(x)− sin4(x)) cos(x))dx

Using the substitution u = sin(x), we know du = cos(x)dx, so the integral becomes:∫
(u2 − u4)du =

u3

3
− u5

5
+ C

=
sin3(x)

3
− sin5(x)

5
+ C
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Problem 3:

(a) (6 points) Substitution: u = sinx for x ∈ [−π/2, π/2] [1 point for good choice of substitution,
1 point for choice of interval for x]

du = cosxdx

∫ 1

−1

√
1− u2du =

∫ π/2

−π/2

√
1− sin2 x cosxdx =

∫ π/2

−π/2
cos2 xdx

[2 points for correctly executed (valid, useful) substitution, 2 points for correct bounds] (This is
easier to do, e.g. by the half-angle trig identity, but you did not need to say this. There is a
similar substitution u = cosx that works as well. )

(b) (4 points) There are of course many possible answers. Some valid substitutions include
u = x + 1 or u = lnx, or u = tanx for x = [−π/4, π/4]. Here is a sample correct answer:
Substitution: u = tanx for x = [−π/4, π/4]

du = sec2 xdx

∫ 1

−1

√
1− u2du =

∫ π/4

−π/4

√
1− tan2 x sec2 xdx.

(1 point for a choice of valid substitution, 2 points for correctly executed (valid) substitution,1
point for correct bounds)

(Remember that a valid choice should be a 1−1 function of u for u from −1 to 1. So it is not valid
to take, for example, u = secx since sec x does not take any values between −1 and 1 (except for
−1, 1). One cannot take x = u2 because that is not a 1− 1 function for u from −1 to 1, e.g. when
u = 1 we have x = 1 and when u = −1 we also have x = 1. See your homework problem from
Week 4– Chapter I, Section 15, #44 –where you explained what can go wrong when you make
this kind of invalid substitution.)
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Problem 4:

(a) (5 points) You could use integration by parts to find the reduction formula. Let F (x) =
xn, G′(x) = e2x. [1 point for using integration by parts, 1 point for choice of F (x), G′(x)]

Then F ′(x) = nxn−1, G(x) = 1
2
e2x, so we get:∫

xne2xdx =
1

2
xne2x −

∫
n

2
xn−1e2xdx =

1

2
xne2x − n

2

∫
xn−1e2xdx

[1 point for correctly finding F ′(x), G(x), 1 point for integrating correctly, and then 1 point for
pulling out the constant n

2
so that you actually get a reduction formula]

Note: You could do this problem with F (x) = e2x, G′(X) = xn, which we gave points for if done
correctly.

(b) (5 points) Notation: Let In =
∫
xne2xdx. The reduction formula is In = 1

2
xne2x−n

2
In−1.

We first calculate I0, which is just
∫
e2xdx. This can be done directly, and integrates to 1

2
e2x +C.

Using the reduction formula, we can then plug I0 in to the right hand side of I1 = 1
2
xe2x − 1

2
I0 to

find I1. We then plug I1 in to the reduction formula when n = 2 to find I2, and then plug I2 in
to the reduction formula for n = 3, etc. We do this process of finding In by multiplying In−1 by n

2

and then subtracting this from 1
2
xne2x a total of 50 times until we reach I50. This is the integral

we want, so we are done.

Note: You could alternately start at I50 and work your way down to I0 by repeated substitu-
tion.

Things that were needed to get full points:

• Starting at I0 and working up or starting at I50 and working down.

• Mentioning that I0 could be integrated directly.

• Describing repeated use of the reduction formula.

• Mentioning explicitly or implicitly that this would occur a total of 50 times.

• Some description of the algebra required to do this repeated substitution.

(c) (5 points) Instead of using the reduction formula, we could have used integration by parts on
the integral

∫
x50e2xdx. With the correct choice of F (x), G′(x), this would lead to an expression

in terms of the integral
∫
x49e2xdx. We could then apply integration by parts again to get an

expression in terms of
∫
x48e2xdx, and continue using integration by parts 50 times in this manner.

The expression would then be in terms of
∫
e2xdx, which can be integrated directly as 1

2
e2x +

C.

Note: You could alternately start at
∫
e2xdx and use a different choice of F (x), G′(x) to eventually

get to
∫
x50e2xdx.

Things that were needed for full points:

• Mentioning you could use integration by parts.
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• Stating that you use integration by parts on
∫
x50e2x in order to reduce the exponent of x.

• Describing the repeated use of integration by parts.

• Stating that the exponent of x decreases by 1 at each step or that you would integrate by
parts 50 times.

• Mentioning that the base case,
∫
e2xdx, can be integrated directly.
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Problem 5: (15 points)

The problem asks to find
∫

x4+2x3+3x2+3x+2
(x+1)(x2+x+1)

dx. We are going to need to do partial fraction decom-
position, but since the degree of the numerator is 4 and the degree of the denominator is 3, we first
must do polynomial long division. Keep in mind that polynomial long division only works with sim-
plified expressions, so we have to multiply out the denominator and divide x4+2x3+3x2+3x+2

x3+2x2+2x+1
.

After long division, our new integral is
∫
x+ x2+2x+2

x3+2x2+2x+1
dx. To do partial fraction decomposition on

the second term, we need the denominator to be factored. We know from the original statement
of the problem that it factors to (x + 1)(x2 + x + 1). So we will perform partial fractions on

x2+2x+2
(x+1)(x2+x+1)

, which has the form

x2 + 2x+ 2

(x+ 1)(x2 + x+ 1)
=

A

x+ 1
+

Bx+ C

x2 + x+ 1
.

Multiplying by (x+ 1)(x2 + x+ 1) on both sides, we get

x2 + 2x+ 2 = A(x2 + x+ 1) + (Bx+ C)(x+ 1)

= Ax2 + Ax+ A+Bx2 +Bx+ Cx+ C

= Ax2 +Bx2 + Ax+Bx+ Cx+ A+ C

= (A+B)x2 + (A+B + C)x+ (A+ C).

Equating coefficients, we get

A+B = 1, A+B + C = 2, A+ C = 2.

The solution to this system of equations is A = 1, B = 0, and C = 1. Thus we can rewrite the
original integral as ∫

x+
1

x+ 1
+

1

x2 + x+ 1
dx.

Getting to this point in the problem was worth 6 points: 2 points for correct long division, 3
points for correctly finding A,B,C, and 1 point for rewriting the integral in correct form.

We will do each integral individually. We have∫
xdx =

x2

2
+ C.

For
∫

1
x+1

dx, we can make the substitution u = x+ 1, and so du = dx, thus we have∫
1

x+ 1
dx =

∫
1

u
du = ln |u|+ C = ln |x+ 1|+ C.

Correctly integrating these first two integrals was worth 3 points. Correctly integrating just one
of these integrals was worth 1 point.

For the last integral, we must complete the square on the denominator and put it in the form∫
1

v2+1
dv. We have

x2 + x+ 1 =

(
x+

1

2

)2

+
3

4
,
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and so
1

x2 + x+ 1
=

1(
x+ 1

2

)2
+ 3

4

=
1

3
4

[
(x+ 1

2)
2

3
4

+ 1

]
=

4

3
· 1

4(x+ 1
2)

2

3
+ 1

=
4

3
· 1(

2(x+ 1
2
)√

3

)2
+ 1

=
4

3
· 1(

2x+1√
3

)2
+ 1

.

To integrate, we will make the substitution v = 2x+1√
3

, and so dv = 2√
3
dx, and thus dx =

√
3
2
dv.

We have ∫
1

x2 + x+ 1
dx =

4

3

∫
1(

2x+1√
3

)2
+ 1

dx =
4

3
·
√

3

2

∫
1

v2 + 1
dv

=
2√
3

arctan v + C =
2√
3

arctan

(
2x+ 1√

3

)
+ C.

Correctly integrating this final integral was worth 6 points: 2 points for correctly completing the
square, 2 points for correctly writing in in the form 1

v2+1
, and 2 points for correctly integrating

this to arctan v.

Thus the final answer is∫
x4 + 2x3 + 3x2 + 3x+ 2

(x+ 1)(x2 + x+ 1)
dx =

x2

2
+ ln |x+ 1|+ 2√

3
arctan

(
2x+ 1√

3

)
+ C.



9

Problem 6:

(a) (3 points) It is possible to find
∫
x2dx without knowing the Fundamental Theorem of

Calculus. By definition, the indefinite integral
∫
x2dx is any anti-derivative of x2. Indefinite

integrals only require anti-differentiation.

(b) (7 points) The Fundamental Theorem of Calculus tells us that definite integrals of contin-
uous functions can be computed using indefinite integrals. Specifically, it says:

If f is a continuous function and F is an anti-derivative of f , then
∫ b
a
f(x)dx = F (b)− F (a) for

all real numbers a and b.

The Fundamental Theorem of Calculus does not help us with
∫
x2dx, since it does not give us any

way to compute indefinite integrals. The Fundamental Theorem of Calculus doesn’t tell us how
to find anti-derivatives, it just gives us something to do with them once we’ve found them.

The Fundamental Theorem of Calculus does help us with
∫ 1

0
x2dx, because it tells us how to com-

pute definite integrals of continuous functions. Specifically, since we know that x2 is a continuous

function and
(
x3

3

)′
= x2, the Fundamental Theorem of Calculus tells us that

∫ 1

0

x2dx =
x3

3

∣∣∣∣1
0

=

(
(1)3

3
− (0)3

3

)
= 1/3.

Makeup Problem 7 (10 points) When we write
∫
x2dx = x3

3
+ C we mean that for any

constant C, the derivative of x3

3
+C is equal to x2, and that every anti-derivative of x2 is equal to

x3

3
+ C for some choice of a constant C.

Since the derivative of a constant is 0, adding a constant to any anti-derivative will give us another
anti-derivative of the same function. Also, since the only functions whose derivatives are 0 are
constant functions, any two anti-derivatives of the same function differ by a constant.

In general, when we add +C to our indefinite integrals, we are acknowledging that adding on
any constant will give us another anti-derivative of the same function, and that any other anti-
derivative of the same function can be found by adding on a certain constant.
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Problem 7:

(a) (13 points) This problem needed to be broken down in to cases, depending on what p is.

Case 1: p ≥ 0. In this case,
∫ 1

0
xpdx is a proper integral, so this integral has to exist. Explic-

itly: ∫ 1

0

xpdx =
xp+1

p+ 1

∣∣∣∣1
0

=
1

p+ 1

Case 2: p < 0. In this case, xp is not defined at x = 0, so we need to set this up as an improper
integral. We get that this equals:

lim
a→0

∫ 1

a

xpdx

[2 points for correctly writing the improper integral for p < 0]

How we do this integral depends on whether p = −1 or not. [1 points for splitting this up in to
the cases where p 6= −1 and where p = −1]

As long as p 6= −1, this equals:

lim
a→0

[
xp+1

p+ 1

]1
a

= lim
a→0

1

p+ 1
− ap+1

p+ 1

[4 points for writing this limit correctly]

If −1 < p < 0, this limit exists and equals 1
p+1

. If p < −1, this integral does not exist as ap+1 goes

to ∞ as a→ 0. [2 points for doing this limit calculation]

Finally, if p = −1, then we have:

lim
a→0

∫
x−1dx = lim

a→0
(ln(1)− ln(a))

= lim
a→0

(− ln(a)) =∞

So, this integral does not exist for p = −1. [2 points for working out this case correctly]

Putting this all together, we get that the integral exactly when p > −1. [2 points for the correct
final answer]

(b) (2 points) You needed to state that this integral exists when p < −1 and does not exist for
p ≥ −1.
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Problem 8:

(a) (5pts) Definition: lim
a→∞

∫ a
1

dx
(x4+2x2−x+1)1/4

No Credit for ”area under curve”.

(b) (15pts) When x ≥ 1, we have x2 ≤ x4 and −x+ 1 ≤ 0, so x4 + 2x2 − x+ 1 ≤ 3x4 and

1

(x4 + 2x2 − x+ 1)1/4
≥ 1

(3x4)1/4
=

1

(3)1/4x
.

By comparison theorem,∫ ∞
1

1

(x4 + 2x2 − x1)1/4
dx ≥

∫ ∞
1

1

31/4x
dx

=
1

31/4
lim
a→∞

∫ a

1

dx

x

=
1

31/4
lim
a→∞

ln a (which does not exist,∞)

So the original integral
∫∞
1

dx
(x4+2x2−x+1)1/4

does not exist.

Common Mistakes:

• 6pts for the estimation 1
(x4+2x2−x+1)1/4

∼ 1
x

and stating that
∫∞
1

dx
x

DNE, without actu-

ally unsing comparison theorem.

• 3pts for wrong comparison theorem, such as

1. 1
(x4+2x2−x+1)1/4

≤ g(x), and
∫∞
1
g(x)dx exists;

2. 1
(x4+2x2−x+1)1/4

≤ 1
x

and
∫∞
1

1
x
dx DNE, so the

∫∞
1

dx
(x4+2x2−x+1)1/4

DNE.

• 10pts for students who use the right comparison theorem with wrong inequality, like
1

(x4+2x2−x+1)1/4
≥ 1

x
.

Full credits for the correct inequality(with the proof) and correct comparison theorem


