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1 2015-01-21: Sheaves

1.1 Course outline

Rough outline:

• Sheaves (“geometric”)

• Schemes (“algebraic”)

• Moduli spaces

• Other?

There will be weekly homework and no exams.
References:

• Hartshorne, Algebraic Geometry

• Shafarevich, Basic Algebraic Geometry

• Ravi Vakil’s notes

1.2 Sheaves

Geometry studies “spaces”. The difference between different flavors of geometry is which
kinds of functions on spaces are considered.

Examples:

• Topological spaces with continuous functions

• Differentiable manifolds with differentiable functions

• Complex manifolds with complex analytic functions
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• Algebraic varieties with regular functions
Problem: Sometimes, there are too few globally defined functions. For example, on a com-

pact complex manifold or a projective algebraic variety, the only globally defined functions
are constants.

Instead, we want to study locally defined functions, leading to a new structure: to each
open subset U ⊂ X, we assign the space of functions on U .
Definition 1.1 (Presheaf). Let X be a topological space. A presheaf F on X is the following
data:
(1) a set F (U) for each open U ⊂ X, whose elements are called sections of F over U ;

(2) maps f 7→ f |V : F (U) → F (V ) for each inclusion V ⊂ U such that F (U) → F (U) is
the identity and (f |V )|W = f |W for any W ⊂ U ⊂ V .

In other words, if Open(X) is the poset of open subsets ofX, then a presheaf onX is a functor
F : Open(X)op → Set. A morphism of presheaves F → G is a natural transformation.
Remark 1.2. More generally, if C is any category, a C-presheaf is a functor Open(X)op → C.
Example 1.3 (Constant presheaf). Fix a set S. Define F (U) = S for all open U , and let all
restriction maps be the identity on S.
Definition 1.4 (Sheaf). A sheaf F is a presheaf such that, for every open cover U =

⋃
i Ui:

(1) If f, g ∈ F (U) such that f |Ui = g|Ui for all i, then f = g. (If F satisfies this condition,
we say F is a separated presheaf .)

(2) Given fi ∈ F (Ui) such that fi|Ui∩Uj = fj|Ui∩Uj for all i, j, there exists f ∈ F (U) such
that f |Ui = fi for all i. By (1), such an f is unique.

In other words, we have an equalizer diagram

F (U)→
∏
i

F (Ui)⇒
∏
i,j

F (Ui ∩ Uj),

where the morphisms are f 7→ (f |Ui), (fi) 7→ (fi|Ui∩Uj), and (fj) 7→ (fj|Ui∩Uj). A morphism
of sheaves F → G is a morphism of presheaves where the source and target are sheaves.
Remark 1.5. Similarly, we define C-sheaves for any complete category C, i.e., C has all small
limits (equivalently, C has small products and equalizers).
Example 1.6 (“Nice” functions). Let X be a “space” (topological space, manifold, variety,
etc.), and let F be a sheaf of “nice functions” (continuous, smooth, analytic, regular, etc.) on
X.
Example 1.7 (Bounded continuous functions). Let X be a topological space, and let F (U)
be the set of bounded continuous functions f : U → R. This is a separated presheaf, but not
a sheaf — a locally bounded function is not necessarily bounded!
Example 1.8 (Sigular cochains). Singular chains form a co-presheaf (a covariant functor
Open(X)→ Set), but not a presheaf. Singular cochains, on the other hand, form a presheaf.
However, this is not even a separated presheaf, since there can be simplices on U that aren’t
wholly contained in any of the Ui.
Example 1.9 (Locally constant sheaf). Fix a set S. For each open U ⊂ X, let F (U) be the
set of locally constant maps U → S. This is a sheaf.
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2 2015-01-23: Germs and stalks

2.1 More examples

Example 2.1. Let X and Y be topological spaces. Then we can define a sheaf F on X by
F (U) = HomTop(U, Y ).
Example 2.2. Given π : E → X, consider the sheaf of sections of π:

F (U) =
{
s : U → E continuous

∣∣ π ◦ s = id
}
.

Example 2.3. Let X be a differentiable manifold. Then U 7→ C∞(U) defines a sheaf of R-
algebras on X. Also, for k ≥ 1, U 7→ Ωk(U) is a sheaf of smooth differential k-forms on X,
which is a sheaf of R-vector spaces. We obtain a complex of sheaves of R-vector spaces

C∞
d−→ Ω1 d−→ Ω2 → . . .

2.2 Germs and stalks

Definition 2.4. Let F be a presheaf on X, and fix a point x ∈ X. The stalk of F at x is
Fx := colimU3x F (U). An element of Fx is called a germ of a section of F at x.

More explicitly, an element of Fx is represented by a pair (U, s), where U is an open
neighborhood of x and s ∈ F (U). Pairs (U, s) and (V, t) are considered equivalent iff there is
an open W ⊂ U ∩ V such that s|W = t|W .

Example 2.5. Let X be a (real or complex) analytic manifold, and let F be the sheaf of
analytic functions on X. For all x ∈ X, the stalk Fx is the ring of power series convergent
on some neighborhood of x.
Example 2.6. Let X be an algebraic variety, and let OX be the sheaf of regular functions on
X. The stalk OX,x is the localization.
Remark 2.7. If C is an arbitrary complete category, then C-sheaves might not have stalks
— we also need C to have filtered colimits. However, stalks will at least exist as ind-objects :
formal filtered colimits of objects of C.

3 2015-01-26: Sheafification
Definition 3.1. Let F be a presheaf on a space X. Its sheafification F̃ is a sheaf on X
together with a map F → F̃ such that for any sheaf G, any morphism F → G factors
uniquely as F → F̃ → G.

Remark 3.2. Let PShf(X) (resp. Shf(X)) be the category of presheaves (resp. sheaves) on
X. Then sheafification is the left adjoint to the fully faithful inclusion PShf(X)→ Shf(X).

We can construct F̃ as follows:

F̃ (U) = colim
U=

⋃
i Ui

{
(si ∈ Ui) : si

∣∣
Ui∩Uj = sj

∣∣
Ui∩Uj ∀i, j

}
,

where the colimit is with respect to refining covers.
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Example 3.3. Let F be the constant presheaf on S. Then F̃ is the constant sheaf on S, i.e.,
the sheaf of locally constant maps U → S. (In particular, F (∅) = {∗}.)

Proposition 3.4. Let F be a presheaf, and fix x ∈ X. The sheafification map F → F̃
induces an isomorphism Fx

'−→ F̃x.

Proposition 3.5. If ϕ : F → G is a morphism of sheaves such that ϕx : Fx → Gx is an
isomorphism for all x ∈ X, then ϕ is an isomorphism.

Corollary 3.6. If F is a presheaf and F ′ is a sheaf on X together with ϕ : F → F ′ which
induces a bijection on all stalks, then F ′ is the sheafification of F .

4 2015-01-28: Maps between sheaves
Exercise 4.1. If ϕ : F → G is a homomorphism of sheaves of groups, then the sub-presheaf
ker(ϕ) = {s ∈ F | ϕ(s) = e} is a sheaf.

However, the same is not true for images.

Example 4.2. Let O be the sheaf of C-valued functions on X, and let O∗ be the sheaf of
C×-valued functions on X. Then exp : O → O∗ is a homomorphism of sheaves of abelian
groups. The kernel ker(exp) is the (locally) constant sheaf associated to the additive group
2πi · Z.

Since we can take logarithms locally but not globally, the maps on sections O(U) →
O∗(U) are locally surjective, but not surjective. Hence, the image presheaf , defined by
U 7→ im(O(U)→ O∗(U)), is not a sheaf.

Definition 4.3. Let ϕ : F → G be a morphism of sheaves. The image sheaf im(ϕ) is the
sheafification of the image presheaf U 7→ im(F (U)→ G(U)).

The sheafification of exp : O → O∗ is all of O∗, so exp is an epimorphism of sheaves (but
not an epimorphism of presheaves). Even though Shf(X) is a full subcategory of PShf(X),
these categories have different notions of epimorphism.

5 2015-01-30: Espace étalé of a sheaf
Presheaves of abelian groups on a space X form an abelian category; sums of morphisms,
direct sums, kernels, and cokernels are taken over each open subset U . The functor F 7→
F (U) : PShfAb(X)→ Ab is exact.

Sheaves of abelian groups on a space X also form an abelian category, but cokernels
require sheafification. We have an adjunction between sheafification F 7→ F̃ : PShfAb(X)→
ShfAb(X) and inclusion ShfAb(X) ↪→ PShfAb(X); sheafification is exact, and inclusion is full
and left exact (but not right exact). Also, for each x ∈ X, the functor F 7→ Fx : ShfAb(X)→
Ab is exact.

Example 5.1. The exact sequence 0→ Z 2πi−−→ O exp−−→ O× → 1 induces an exact sequence on
stalks, but not always on open subsets.
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5.1 Another approach to sheaves

Let F be a sheaf on a space X. We proved that s ∈ F (U) is determined by the germs sx ∈ Fx
for all x ∈ U . Put E(F ) =

⊔
x Fx, and define π : E(F )→ X by π(Fx) = x. Each s ∈ F (U) is

a section s : U → E(F ) such that π ◦ s = id.
Remark 5.2. There is a natural injection F ↪→ {sheaf of sections of π}.
Definition 5.3. A section s : U → E(F ) is representable if locally over U it comes from a
section of F , i.e., for every x ∈ U , there is x ∈ V ⊂ U and a section t ∈ F (V ) such that
s(y) = ty ∈ Fy for all y ∈ V .

Claim 5.4. F is isomorphic to the sheaf of representable sections of π.

Let us equip E(F ) with the smallest topology for which all representable sections are
continuous.

Lemma 5.5. The continuous sections of π are exactly the representable sections.

Proof. For two sections s, t ∈ F (U), the locus {x ∈ U | sx = tx} is open in U .

Each s ∈ F (U) is a section s : U → E(F ) such that π ◦ s = id. Hence, F is isomorphic to
the sheaf of continuous sections of π. We call E(F ) the espace étalé of F .

The map π : E(F ) → X is a local homeomorphism: For any y ∈ E(F ), there are neigh-
borhoods y ∈ V ⊂ E(F ) and π(y) ∈ U ⊂ X such that π|V : V → U is a homeomorphism.
Conversely, if π : Y → X is a continuous local homeomorphism, then Y is the espace étalé
of the sheaf of continuous sections of π.

6 2015-02-02: Algebraic varieties

6.1 Sheaves of sections

Continuing from last time, the espace étalé construction gives an equivalence

Shf(X)←→ {maps π : Y → X such that Y is locally homeomorphic to X} .

The inverse of the functor F 7→ E(F ) is the functor sending Y to its sheaf of sections.
As an application, given a presheaf F , we can construct E(F ) in the same way, and the

sheafification F̃ is the sheaf of sections of E(F ). Explicitly,

F̃ (U) =
{

(sx ∈ Fx)x∈U
∣∣ ∀x ∈ U, ∃V 3 x and t ∈ F (V ) such that sy = ty ∀y ∈ V

}
.

Example 6.1 (Constant sheaf). Fix S and consider the constant presheaf F . For all x ∈ X,
Fx = S, so E(F ) = X×S → X, where X×S has the product topology (S is discrete). Then
F̃ (U) is the set of locally constant maps U → S.
Example 6.2 (Skyscraper sheaf). Fix S and x ∈ X. Define F (U) = S if x ∈ U and F (U) =
{∗} if x /∈ U . (Exercise: This is a sheaf.) Then for y ∈ X,

Fy =

{
S if y ∈ {x},
{∗} if y /∈ {x}.

This is called a skyscraper sheaf .
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6.2 Algebraic varieties

Let X be an affine algebraic variety over an algebraically closed field k. Consider X as an
abstract variety: X is a set together with a class of functions k[X] ⊂ {f : X → k} such that
there exists a bijection between X and an algebraic subset of An under which k[X] become
polynomial functions.

One can also start with a finitely-generated reduced k-algebra R = k[X], then put X =
mSpec(R). We can then view f ∈ R as a function on X: for a point x ∈ X corresponding to
the maximal ideal mx ⊂ R, define f(x) = f + mx ∈ R/mx

∼= k.
Consider X with the Zariski topology. Define the sheaf of regular functions OX by

OX(U) =
{
f : U → k

∣∣ f is regular
}
.

It is a nontrivial statement that OX(X) = k[X].

7 2015-02-04: Sheaves of regular functions
Open sets of the form D(g) = X − Z(g) form a basis for the Zariski topology on X. The
coordinate ring R = k[X] is a finitely-generated reduced k-algebra.

Put OX(D(g)) = R[g−1] for g ∈ R. If D(g2) ⊃ D(g1), then g1 | gN2 for some N ∈ N,
so there is a localization map OX(D(g2)) = R[g−1

2 ] → R[g−1
1 ] = OX(D(g1)). For any open

U ⊂ X, define OX(U) = limD(g)⊂U OX(D(g)). This makes OX into a presheaf.

Proposition 7.1. Let S be a commutative ring. Fix elements gi ∈ S such that (gi)i = (1).
Given ϕi ∈ S[g−1

i ] such that ϕi = ϕj in S[(gigj)
−1] for all i, j, there is a unique f ∈ S such

that f = ϕi in S[g−1
i ] for all i.

Proof. Write ϕi = fi/g
κi
i . Then fi/gκii = fj/g

κj
j in S[(gigj)

−1] means (gigj)
mij(fig

κj
j −fjg

κi
i ) =

0 in S. Consider a finite subfamily such that (g1, . . . , gn) = (1). Replace gi by gNi for N � 0
so that ϕi = fi/gi and figj − fjgi = 0 for all i, j. Write 1 =

∑
i gihi. Now take f =

∑
i fihi.

Then fgj =
∑

i figjhi =
∑

i fjgihi = fj, so f = fj/gj = ϕj in S[g−1
j ].

For uniqueness, suppose f = ϕj = fj/gj in S[g−1
j ]. Then gNj fgj = gNj fj. Replace gj by

gMj , so that fgj = fj. Hence, f =
∑

j fgjhj =
∑

j fjhj.

So OX is a sheaf of k-algebras on X such that OX(D(g)) = k[X][g−1] for all g ∈ k[X].
This is like partitions of unity in differential geometry.

8 2015-02-06: Ringed spaces
Definition 8.1. A ringed space (X,OX) is a topological space X equipped with a sheaf of
rings OX , the structure sheaf of X. A morphism of ringed spaces (X,OX) → (Y,OY ) is
a continuous map f : X → Y together with a sheaf morphism f ] : OY → f∗OX . More
explicitly, for every open subset V ⊂ Y , f ](V ) : OY (V )→ OX(f−1(V )) is a ring morphism,
and these morphisms are compatible with restriction.
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Example 8.2. Given topological spaces (smooth manifolds, complex manifolds, algebraic vari-
eties) X and Y , a continuous (smooth, holomorphic, regular) map X → Y gives a morphism
of ringed spaces (X,OX) → (Y,OY ). These give functors to ringed spaces; we do not claim
these functors are fully faithful.

Given affine algebraic varieties X and Y over a field k, when do morphisms (X,OX) →
(Y,OY ) come from morphisms of algebraic varieties?

Example 8.3. A morphism of ringed spaces (Spec k, k) → (Spec k, k) is the same thing as a
ring endomorphism of k. This isn’t what we want.

So, instead, consider k-ringed spaces, i.e., spaces equipped with sheaves of k-algebras.
The pullback of functions for a morphism of k-ringed spaces is required to be a morphism of
k-algebras. There is a faithful, but not full, functor from k-ringed spaces to ringed spaces.

The next step is to prove that the category of affine algebraic varieties over k embeds
fully faithfully into the category of k-ringed spaces. We’ll do this next time.

9 2015-02-09: Affine varieties as ringed spaces
Here’s what we’ll talk about next in the course:

(1) Algebraic varieties via sheaves (right now)

(2) Schemes (next week; Daniel Erman will be substituting)

(3) Quasicoherent sheaves and vector bundles

(4) Cohomology

Theorem 9.1. Let X and Y be affine algebraic varieties over k. Morphisms of k-ringed
spaces (X,OX)→ (Y,OY ) are in natural bijection with regular maps X → Y .

Proof. Let f : (X,OX) → (Y,OY ) be a morphism of k-ringed spaces. Then the pullback
ϕ = f ](Y ) : k[Y ] = OY (Y ) → OX(f−1(Y )) = OX(X) = k[X] induces a regular map
X → Y . The nontrivial part is to reconstruct f from ϕ.

For x ∈ X, put mx = {f ∈ k[X] : f(x) = 0} ⊂ k[X], and likewise for y ∈ Y . Then
ϕ−1(mx) ⊂ k[Y ] is a maximal ideal. We claim that my = ϕ−1(mx), where y = f(x).

Given g ∈ k[Y ] such that ϕ(g)(x) = 0, we have g(y) = 0. Thus, ϕ−1(my) ⊆ my. Indeed,
if g(y) 6= 0, then the germ of g is invertible in OY,y, so the germ of ϕ(g) is invertible in OX,x,
whence ϕ(g)(x) 6= 0. Since ϕ−1(mx) is maximal, ϕ−1(mx) = my, as claimed.

Next, we must show that f is equal to the morphism f̃ : (X,OX)→ (Y,OY ) induced by
ϕ. We know the pullbacks agree on OY (Y ) → OX(X) and that f = f̃ as continuous maps.
It remains to show that for any principal open V = D(g) ⊂ Y (with g ∈ k[Y ]),

f ](V ) = f̃ ](V ) : k[Y ][g−1] = OY (V )→ OX(f−1(V )) = OX(f̃−1(V )).

Since f ](V )|k[Y ] = f̃ ](V )|k[Y ], this follows from general properties of localization.
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10 2015-02-11: Abstract algebraic varieties
Let F be a sheaf on a space X. For any open U ⊂ X define the restriction F |U by F |U(V ) =
F (V ) for any open V ⊂ U . This is also a sheaf. If F has additional structure, so does F |U .

In particular, F 7→ F |U : ShfAb(X)→ ShfAb(U) is an exact functor. The key fact is that
Fx = (F |U)x for all x ∈ U .
Fact 10.1. If X is a (k-)ringed space, then any open subset U ⊂ X is a (k-)ringed space
(U,OX |U = OU). There is a natural morphism of (k-)ringed spaces (U,OX |U)→ (X,OX).

Definition 10.2. An abstract algebraic variety over k is a k-ringed space (X,OX) that is
locally isomorphic to an affine algebraic variety, i.e., there is an open covering X =

⋃
Ui such

that (Ui,OX |Ui) ∼= (Vi,OVi) for some affine algebraic varieties Vi.

Conversely, given a topological space X =
⋃
Ui and homeomorphisms ϕi : Ui → Vi such

that ϕj ◦ ϕ−1
i are regular, X has a natural structure of an algebraic variety.

Exercise 10.3. Let X and Y be k-ringed spaces. Consider the presheaf on X defined by

U 7→ {morphisms of k-ringed spaces (U,OU)→ (Y,OY )} .

Prove this is a sheaf.

Remark 10.4. Morphisms of algebraic varieties are morphisms between them as k-ringed
spaces.

Remark 10.5 (Differential analogy). A differentiable manifold is an R-ringed space that is
locally isomorphic to (Rn, C∞), where C∞ is the sheaf of C∞-functions. (Usually, one also
requires the space to be second-countable and Hausdorff.)

Remark 10.6. Similarly, algebraic varieties are often required to be compact and separated.

Example 10.7. Here are some examples of (abstract) algebraic varieties.

• Quasi-projective varieties: locally closed subsets of Pn for some n.

• Arbitrary disjoint unions of quasi-projective varieties.

• Two copies of P1, glued away from one point. This is non-separated.

• A Z-indexed sequence of projective lines, with the n-th line glued to the (n− 1)-st and
(n+ 1)-st line at a single point.

11 2015-02-13: Operations on sheaves
Fix a continuous map f : X → Y .
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11.1 Direct image

Definition 11.1 (Direct image). Given a presheaf F onX, the direct image (or pushforward)
f∗F is the presheaf on Y defined by f∗F (V ) = F (f−1(V )) for all open V ⊂ Y .

Exercise 11.2 (Easy exercise). If F is a sheaf, then f∗F is also a sheaf.
Remark 11.3. Classically, given a sheaf F on X and a sheaf G on Y , a morphism G→ f∗F
is called a cohomomorphism.
Example 11.4. Let F be a sheaf on X, and let p : X → {∗} be the unique map. Then
p∗F = F (X).
Example 11.5. Let i : {∗} → X be a map. Let S be a set, viewed as a sheaf on {∗}. Then
i∗S is the skyscraper sheaf of S at i(∗) ∈ X.

Proposition 11.6 (Properties of direct image). (1) f∗ is a functor.

(2) If g : X → Y and f : Y → Z are two continuous maps, then (fg)∗ = g∗f∗.

(3) f∗ is an additive, left exact functor on sheaves of abelian groups.

Example 11.7. Let X be an algebraic variety. Let j : U ↪→ X be an open embedding. Let F
be a sheaf on U . Then (j∗F )|U = F . In particular, (j∗F )x = Fx for each x ∈ j(U).

For x ∈ X − j(U), the stalk (j∗F )x is more complicated in general. For example, if
X = A1 and U = A1 − {0}, then (j∗OU)0 is the ring of germs of rational functions at 0. If
X = A2 and U = A2 − {0}, then (j∗OU)0 is the ring of germs of regular functions at 0.

11.2 Inverse image

Definition 11.8. Given a presheaf G on Y , the inverse image (or pullback) f−1G is the
presheaf on X defined by (f−1

preG)(U) = colimV⊃f(U) G(V ). If G is a sheaf, define f−1G to be
the sheafification of f−1

preG.

Proposition 11.9. For each x ∈ X, (f−1G)x = Gf(x).

Hence, we can equivalently define f−1G be its espace étalé: E(f−1G) = E(G)×Y X.
Exercise 11.10. Let p : E(G)→ Y be the natural map. Then

(f−1G)(U) = {s : U → E(G) : p ◦ s = f} .

Example 11.11. Let p : X → {∗} be the unique map. Let S be a set, considered as a sheaf
on {∗}. Then p−1S = S is the constant sheaf on F associated to S.
Example 11.12. Let i : {∗} → X be a map. Let F be a sheaf on X. Then i−1F = Fi(∗).

Proposition 11.13 (Properties of inverse image). (1) f−1 is a functor.

(2) If g : X → Y and f : Y → Z are two continuous maps, then (fg)−1 = f−1g−1.

(3) f∗ is an additive, exact functor on sheaves of abelian groups.

Proposition 11.14. There are natural bijections

HomShf(X)(f
−1G,F )←→ HomShf(Y )(G, f∗F )←→ {cohomomorphisms G F} .

In particular, f−1 is left adjoint to f∗.
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12 2015-02-16: Affine schemes
Guest lecture by Daniel Erman.

In the theory of varieties, affine varieties over an algebraically closed field k correspond to
finitely-generated reduced k-algebras. A better theory would include, among other things:

• Solutions of polynomials over Z,Q,Qp, Fq, etc.

• Nonreduced objects (double points, etc.)

• Local neighborhoods of points.

Grothendieck’s idea was to replace finitely-generated reduced k-algebras with arbitrary
commutative rings. The corresponding geometric objects are called affine schemes.

12.1 Affine schemes as sets

Given a commutative ring R, define the prime spectrum SpecR = {P ⊂ R prime}. We can
interpret elements of R as “functions” on SpecR via the maps R → RP → κ(P ) = RP/PP
to the residue fields. Note that these “functions” can take values in different fields.
Example 12.1. If R = Z and f = 3 ∈ Z, then f(p) = 3̄ ∈ Z/(p) for each prime number p,
and f(0) = 3 ∈ Q.

12.2 The Zariski topology

The Zariski topology on an affine scheme SpecR is the topology where the closed subsets
have the form V (I) = {P ⊇ I : P ∈ SpecR}, where I ⊆ R is an ideal.

Lemma 12.2. Finite unions and arbitrary intersections of closed subsets are closed.

Proof. If I and J are ideals of R, then V (I) ∪ V (J) = V (IJ). If {Iα} is a family of ideals of
R, then

⋂
α V (Iα) = V (

∑
α Iα).

For f ∈ R, the open subset

Spec(R) \ V (f) = {P ∈ SpecR : f /∈ P} = Spec(R[f−1])

is called a basic open affine. These form a basis for the Zariski topology on SpecR.
Example 12.3. Not every open subset is an affine scheme: the punctured plane Spec(C[x, y])\
V (x, y) is not affine.

12.3 Morphisms of affine schemes

A morphism of affine schemes SpecR→ SpecS is a ring homomorphism S → R.
Example 12.4 (A double point). Morphisms Spec(C[x]/(x)) = Spec(C) → A1

C correspond
to ring maps C[y] → C, which are given by y 7→ a ∈ C. On the other hand, morphisms
Spec(C[x]/(x2)) → A1

C correspond to ring maps C[y] → C[x]/(x2), which are given by y 7→
ax+ b with a, b ∈ C.

12



Example 12.5 (Affine line). The affine line SpecC[t] has a generic point corresponding to the
zero ideal. This point is dense in the whole space, and its residue field is C[t](0) = C(t).

Example 12.6 (Affine plane). Similarly, in SpecC[x, y], we have three types of points: closed
points (x−α, y− β); points (f) with f irreducible, whose closure is the irreducible algebraic
curve defined by f(x, y) = 0; and the generic point (0), whose closure is the whole plane.

Example 12.7 (Local schemes). The affine scheme SpecC[t](t) has two points, an open point
(0) and a closed point (t).

13 2015-02-18: Points and schemes
Guest lecture by Daniel Erman.

13.1 Examples of affine schemes

We now study points of affine schemes. Let R be a commutative ring. A point P ∈ SpecR
is maximal if and only if {P} is closed, in which case P is a closed point . On the other hand,
if R is an integral domain, the zero ideal is dense in the whole space and is called the generic
point . More generally, if P is not closed, then we say P is the generic point of {P}.
Example 13.1 (Real affine line). Consider A1

R = SpecR[t]. There are three types of points:

• Closed points with residue field R, corresponding to ideals (t− a) for a ∈ R.

• Closed points with residue field C, corresponding to ideals (t2 +bt+c) with b2−4c < 0.
These can be thought of as conjugate pairs of points of A1

C.

• The generic point of A1
R, corresponding to (0).

Example 13.2 (Complex affine plane). Consider the affine plane A2
C = SpecC[x, y]. There

are three types of points:

• By the Nullstellensatz, the closed points correspond exactly to ideals (x − α, y − β)
with α, β ∈ C.

• Generic points of irreducible curves, corresponding to (f) with f irreducible.

• The generic point of A2
C.

Example 13.3 (Local rings). Consider the map SpecC[t](t) → SpecC[t]. This is the “Zariski-
local” picture of the affine line at a point.

Remark 13.4. In general, given a ring map φ : A → B, the corresponding scheme map
SpecB → SpecA is given by P 7→ φ−1(P ).

13



13.2 Locally ringed spaces

We want to consider (SpecR,OSpecR) not just as a ringed space, but with the structure of a
locally ringed space.

Definition 13.5. A locally ringed space is a ringed space whose stalks are all local rings. A
morphism of locally ringed spaces is a morphism of ringed spaces such that the stalks of the
structure morphism preserves the maximal ideals.

The key idea is that specifying a sheaf on a basis for the topology uniquely defines the
sheaf. An affine scheme SpecR has a basis of basic open affines (SpecRf )f∈R. Indeed, for
any ideal I ⊆ R, SpecR \ V (I) =

⋃
f∈I SpecRf . One can verify that OSpecR(SpecRf ) = Rf

and that this satisfies the sheaf axioms. Hence, for Pin SpecR,

OX,P = colim
U3P

OX(U) = colim
SpecRf∈P

OX(Rf ) = colim
f /∈P

Rf = RP .

This is a local ring, so SpecR is a locally ringed space.

Definition 13.6. A scheme is a locally ringed space (X,OX) which has an open cover by
affine schemes.

Remark 13.7. If U ⊆ X is an open subset, then OU = OX |U is also a locally ringed space.
So open immersions of schemes correspond to open subsets.

Remark 13.8. Let U ⊆ SpecA be an open subset. Then U is covered by basic affine open
subsets, and hence is a scheme (not necessarily affine).

Example 13.9 (A punctured plane). The scheme A2
C \ V (x, y) has an open affine cover by

SpecC[x, x−1, y] and SpecC[x, y, y−1], but is not affine.

14 2015-02-20: Gluing and morphisms
Guest lecture by Daniel Erman.

14.1 Gluing

Proposition 14.1 (Gluing schemes). Let {Xi}i∈I be a family of schemes. For each i, j ∈ I,
let Xij be an open subscheme of Xi. Let ϕij : Xij

'−→ Xji be isomorphisms such that, for all
i, j, k ∈ I:

(1) ϕij ◦ ϕji = idXij .

(2) ϕik(Xij ∩Xik) = Xki ∩Xkj.

(3) ϕik = ϕjk ◦ ϕij : Xij ∩Xik
'−→ Xki ∩Xkj.

Then there exists a unique scheme X with an open cover {Ui}i∈I of X and isomorphisms
ψi : Xi

'−→ Ui such that ψi|Xij = ψj|Xji ◦ ϕij : Xij → Ui ∩ Uj for all i, j ∈ I.

14



Example 14.2. Let A and B be commutative rings. Let SpecA′ ⊂ SpecA and SpecB′ ⊂
SpecB be open subsets. Let f : A′

'−→ B′ be a ring isomorphism, inducing an isomorphism
φ : SpecB′ → SpecA′. Then we can glue SpecA and SpecB along φ.
Example 14.3. Gluing Spec k[t] and Spec k[s] along t 7→ s : Spec k[t, t−1]

'−→ Spec k[s, s−1]
yields an “affine line with two origins”, a non-separated line X. A global section of X is a
polynomial f(t) on one patch and f(s) on the other.
Example 14.4. Gluing Spec k[t] and Spec k[s] along t 7→ s−1 : Spec k[t, t−1]

'−→ Spec k[s, s−1]
yields the projective line P1

k, the global sections of which are all constant.
Remark 14.5. One can also glue along closed subschemes. This allows us to construct a
scheme with no closed points by gluing countably many copies of a DVR to itself.

14.2 Morphisms

Definition 14.6. A morphism of schemes X → Y is a morphism of locally ringed spaces
(f, f ]) : (X,OX)→ (Y,OY ).

Remark 14.7. We can glue compatible families of morphisms of affine schemes. In fancier
language, affine morphisms satisfy descent for the Zariski topology (and, in fact, for the fpqc
topology).

15 2015-02-23: The functor of points
Definition 15.1. Let R be a commutative ring. By definition, an R-point of a scheme S
is a morphism SpecR → S. This defines a functor R 7→ HomSch(SpecR, S) : Ring → Set,
called the functor of points of S.

Example 15.2. Let k be a field, and write Spec k = {∗}. A k-point of a ringed space (S,OS)
is a morphism of ringed spaces (f, f ]) : (Spec k,OSpec k) → (S,OS), which is equivalent to
giving a point x = f(∗) and a ring map f ]x : OS,x → k.

If (S,OS) is a locally ringed space, then OS,x is a local ring, and f ]x must map the maximal
ideal mS,x into (0) ⊂ k, i.e., f ]x induces an embedding of fields κx ↪→ k, where κx = OS,x/mS,x

is the residue field of S at x. In particular, a k-point of a scheme S is a point x ∈ S together
with an embedding κx ↪→ k.
Remark 15.3. Each point x ∈ S can naturally be viewed as a κx-point. For this reason, κx is
sometimes called the field of definition of x. The field of definition has the universal property
that for any field k, any morphism Spec k → S with image {x} uniquely factors through the
natural morphism Specκx → S.
Remark 15.4. Let U ⊂ S be an open subset. A section f ∈ OS(U) can be viewed as a
“function” on S whose value at x ∈ U is the image of f in κx = OS,x/mS,x. Equivalently, this
is the pullback under Specκx → S.
Example 15.5. Suppose S = SpecR is an affine scheme. Let px ⊂ R be the prime ideal
corresponding to a point x ∈ S. For f ∈ R, we have f(x) = 0 ∈ κx ⇐⇒ f ∈ px. So we can
once again interpret closed subsets of S as being cut out by systems of equations:

V (T ) = {x ∈ S : f(x) = 0 ∀x ∈ T} .

15



Note 15.6. If f(x) = 0 for all x ∈ SpecR, then f ∈
⋂

p p is nilpotent. So nilpotent elements
aren’t visible in this function perspective.

16 2015-02-25: The topology of schemes

16.1 k-points and systems of equations

Definition 16.1. A geometric point of a scheme S is a k-point, where k is an algebraically
closed field.

Example 16.2. The scheme SpecZ[t]/(t2 + 1) has two C-points, given by t 7→ ±i.
Example 16.3. More generally, R-points of SpecZ[t1, . . . , tn, . . . ]/(f1, . . . , fm, . . . ) correspond
to solutions in R of the system of equations 0 = f1 = · · · = fm = . . . in t1, . . . , tn, . . . .
Remark 16.4. SpecZ is the terminal object in the category of schemes.

16.2 Closed subsets

Let S = SpecR be an affine scheme. To each ideal I ⊂ R, we associate a closed subset
Z(I) = {x : px ⊃ I} = Z(I); and to each subset X ⊂ S, we associate an ideal I(X) =
{f ∈ R : f |X = 0} =

⋂
x∈X px. This correspondence has the following properties:

(1) Z(I(X)) = X.

(2) I(Z(J)) =
√
J =

⋂
p⊃J p.

(3) Z(
∑

α Iα) =
⋂
α Z(Iα).

(4) Z(J1J2) = Z(J1 ∩ J2) = Z(J1) ∪ J(Z2).

Hence, this restricts to a bijection between radical ideals of R and closed subsets of S.
Remark 16.5. LetXvar be an affine variety over an algebraically closed field k. Let R = k[Xvar]
be its coordinate ring. Consider the affine scheme Xsch = SpecR. As topological spaces, we
have an inclusion Xvar ⊂ Xsch. Points of Xsch correspond to irreducible closed subsets of
Xvar. (As topological spaces, Xsch is the soberification of Xvar — every continuous map from
Xvar into a sober space uniquely factors through the inclusion Xvar ⊂ Xsch.)
Remark 16.6. Let S = SpecR be an affine scheme. Let x ∈ S be a point corresponding to
a prime ideal px ⊂ R. Then {x} = Z(px) = {y : py ⊃ px}. In particular, {x} = {x} iff px is
maximal, so we can recover the maximal spectrum as the set of closed points in S.
Remark 16.7. The Nullstellensatz implies that, if R is a finitely-generated algebra over a field
k, then closed points (which are defined over k) are dense in SpecR.

Definition 16.8. Let S be a scheme, and let x, y ∈ S. If x ∈ {y}, then we say x is a
specialization of y, and y is a generalization of x.

A generic point of S is a point x ∈ S such that {x} = S. A scheme S has a generic point
if and only if S is irreducible, in which case the generic point is unique.1

Remark 16.9. Any affine scheme is quasi-compact.
1Contrast with Weil’s earlier approach to algebraic geometry, where there are often many generic points.
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17 2015-02-27: Topological properties of schemes
Proposition 17.1. Let S = SpecR be an affine scheme.

(1) S is quasi-compact.

(2) S is irreducible iff R has a unique minimal prime iff the nilradical of R is prime iff all
zero-divisors of R are nilpotent.

(3) S is connected iff R has no nontrivial idempotents.

(4) If R is a Noetherian ring, then S is a Noetherian space (i.e., satisfies the descending
chain condition for closed subsets).2

(5) The dimension of S as a topological space (i.e., the supremum of lengths of chains of
irreducible closed subsets) is equal to the Krull dimension of R.

Definition 17.2. A topological space S is called quasi-separated iff the intersection of two
quasi-compact open subsets is quasi-compact.

Remark 17.3. If S is a quasi-separated scheme, and S =
⋃
α Uα is an affine open cover of S,

then Uα ∩ Uβ is a finite union of affine charts for any α, β.

Exercise 17.4. The converse of the above statement is also true.

Example 17.5. The scheme Spec k[x1, x2, x3, . . . ] is non-Noetherian. If we remove the point
corresponding to the maximal ideal (x1, x2, x3, . . . ), the resulting scheme, which is isomorphic
to
⋃
i Spec k[x1, x2, . . . ][x

−1
i ], is not quasi-compact.

Proposition 17.6. A scheme S is quasi-compact and quasi-separated if and only if there is
a finite affine open cover S =

⋃n
i=1 Ui such that Ui∩Uj is a finite union of affine open subsets

for each i, j.

18 2015-03-02: Zariski-local properties of schemes
Definition 18.1. Let P be a property of commutative rings. We say P is a Zariski-local
property provided that:

(1) For all f ∈ R, if R has property P , then R[f−1] has property P .

(2) If (f1, . . . , fk) = (1) and each R[f−1
i ] has property P , then R has property P .

We say a scheme S has property P provided that every open affine subset of S has property
P .

Proposition 18.2. Let P be a Zariski-local property. Let S =
⋃
α Uα be a scheme with an

affine open cover. Then S has property P if and only if every Uα has property P .
2The converse isn’t true in general, since closed subsets of S only correspond to radical ideals of R.
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It suffices to show that, given affine opens Uα, V ⊂ S, any x ∈ Uα ∩ V has an open
neighborhood W that is principal open in Uα and in V . This follows from the following
property of principal open subsets:

Lemma 18.3. Suppose S = SpecR is affine and U ⊂ S is a principal affine open. Then an
open subset W ⊂ U is principal as an open subset of U if and only if W is principal as an
open subset of S.

Moreover, if U is any affine open subset (not necessarily principal), then a subset of U
that is principal open in S is principal open in U .

Proof. If S ⊃ U ⊃ W and W = S − Z(f), then W = U − Z(f). If S ⊃ U ⊃ W and
U = S − Z(f) and W = U − Z(g), then W = S − Z(fg).

Example 18.4. Here are some Zariski-local properties of commutative rings: reduced, integral,
regular, normal, Jacobson, Noetherian.

Some Zariski-local properties follow a different pattern of terminology when extended to
schemes. For such a property P , we say a scheme S has the property “locally P ” if S has an
affine open covering by affine schemes with property P , and we say S has property P if S is
locally P and quasi-compact. For example:

Definition 18.5. A locally Noetherian scheme S is a scheme such that every affine open
subset of S is the spectrum of a Noetherian ring. A Noetherian scheme is a quasi-compact,
locally Noetherian scheme.

19 2015-03-04: Embeddings

19.1 More properties of schemes

Definition 19.1. A locally Noetherian scheme S is regular iff all stalks of S are regular local
rings.

Exercise 19.2. A scheme S is reduced iff all stalks of OS are reduced.

Remark 19.3. A connected scheme whose stalks are all integral domains is not necessarily
integral: there is a connected reducible scheme S whose stalks are all integral domains. See
[Stacks, tag 0568].

19.2 Open embeddings

Definition 19.4. Let S be a scheme, and let U ⊂ S be an open subset. Then (U,OS|U) is
an open subscheme of S, and the inclusion j : U ↪→ S is called an open embedding .

Abstractly, a morphism of schemes f : X → Y is an open embedding iff f induces an
isomorphism X

'−→ f(X), and f(X) is an open subscheme of Y .

Example 19.5. The inclusion of the generic point Spec k(x)→ Spec k[x](x) is an open embed-
ding. However, the inclusion Spec k(x)→ Spec k[x] = A1

k is not an open embedding, because
the generic point isn’t open in A1

k.

18



19.3 Closed embeddings of affine schemes

Definition 19.6. Let S = SpecR be an affine scheme. A closed subscheme of S is Spec(R/I)
for an ideal I ⊂ R. The quotient map R� R/I induces a map i : Spec(R/I) ↪→ SpecR.

Note that the set-theoretic image of i is Z(I), which only depends on the radical
√
I. So

a closed subscheme is a closed subset plus some extra structure. Moreover, Spec(R/
√
I) is

the unique reduced closed subscheme of S corresponding to the same closed subset.
Example 19.7. Let k be an algebraically closed field. Consider the scheme Spec k[x, y]/(x2−
a, y) ⊂ A2. For a 6= 0, this is the disjoint union of two points, and is reduced. But for a = 0,
this corresponds to the ideal (x2, y), which is a single non-reduced point.
Example 19.8. Consider the scheme Spec k[x, y]/(xy, y2). This is like A1, but it “remembers
a tangent vector” at the origin.3

Next time, we will extend this to arbitrary schemes.

20 2015-03-06: Closed embeddings
Definition 20.1. A closed embedding is a morphism of schemes i : X ↪→ S such that, for
any affine open U = SpecR ⊂ S, there is an ideal I ⊂ R such that i−1(U) = Spec(R/I).

Fact 20.2. It suffices to verify this for some affine open cover of S.

Definition 20.3. Let S be a scheme. Given any closed embedding i : X ↪→ S, define the
ideal sheaf of the closed embedding to be the sheaf IX/S ⊂ OS given on each open U ⊂ S
by

IX/S(U) =
{
f ∈ OS(U) : i−1(f) = 0

}
.

Note that IX/S(U) is an ideal in OS(U). We will give an intrinsic definition of ideal sheaves
later.

Example 20.4. If S = SpecR is an affine scheme and X = Spec(R/I), then IX/S(S) = I.
More generally, if g ∈ R and U = D(g) is the corresponding principal open subset, then
IX/S(U) = ker(R[g−1]→ (R/I)[g−1]) = I[g−1].

Lemma 20.5. The ideal sheaf I ⊂ OS of a closed embedding i : X ↪→ S satisfies the
following condition:

(*) For any affine open U = SpecR ⊂ S and any principal open V = SpecR[g−1] ⊂ U ,
we have I (V ) = I (U)[g−1].

Conversely, given a sheaf I ⊂ OS locally given by ideals and satisfying the above criterion,
we can construct a subscheme X ⊂ S corresponding to I as follows: let S =

⋃
α Uα be

an open cover by affine open subschemes Uα = SpecRα, and let Iα = I (Uα) ⊂ Rα. Then
X =

⋃
α Spec(Rα/Iα).

Not all sheaves locally given by ideals come from closed subschemes. Here is one such
sheaf:

3This is an example of an “embedded point”; see [EH] for more discussion.
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Example 20.6. Let S = A1 = Spec k[x] and U = A1 \ {0} = Spec k[x, x−1]. Let j : U ↪→ A1

be the open embedding. Then j!(OU) ⊂ OA1 is the sheaf4 given by

j!(OU)(V ) =

{
OA1(V ) if V ⊂ U,

0 if 0 ∈ V.

Informally, one can write j!(OU) = {f ∈ OA1 : f0 = 0 ∈ OA1,0}. Even though j!(OU) is a
sheaf of A1 locally given by ideals, it does not correspond to a closed subscheme of A1.

21 2015-03-09: Ideal sheaves

21.1 Ideal sheaves and closed embeddings

Definition 21.1. Let S be a scheme. An ideal sheaf I ⊂ OS is a sheaf of ideals satisfying

(**) For any affine open U = SpecR ⊂ S and any principal open D(g) = SpecR[g−1] ⊂
U , the natural map I (U)[g−1]→ I (D(g)) is an isomorphism.

Exercise 21.2. It suffices to check (*) and (**) for some cover by affine open schemes.

Proposition 21.3. Let I be an ideal sheaf on a scheme S. Then there exists a closed
embedding i : X → S such that I = ker(OS → i∗OX). This closed embedding is unique
up to natural isomorphism, giving a natural equivalence between ideal sheaves and closed
embeddings.

Example 21.4. Let S = Spec k[x] and I = x · OS ⊂ OS. If 0 /∈ U , then I (U) = OS(U). If
0 ∈ U , then I (U) = x · OS(U) $ OS(U). So OS/I is the skyscraper sheaf with stalk k at
0.

Definition 21.5. Let F be a sheaf on a space S. The support of F , denoted supp(F ), is the
smallest closed subset Z ⊂ S such that F |S\Z = 0.

In general, the closed embedding i : X → S corresponding to an ideal sheaf I ⊂ OS can
be explicitly constructed as follows: Put X = supp(OS/I ), let i : X ↪→ S be the inclusion,
and put OX = i−1(OS/I ), so that OS/I = i∗OX . There are lots of things to check, which
we omit.

Exercise 21.6. If S is affine and i : X ↪→ S is a closed embedding, then X is affine.

Problems like this will become much easier once we’ve developed a systematic treatment
of quasi-coherent sheaves.

Definition 21.7. A locally closed subscheme (or simply a subscheme) of S is a closed sub-
scheme of an open subscheme of S. A locally closed embedding is a composition of a closed
embedding and an open embedding.

4In the classical topology, we have to sheafify. However, in the Zariski topology, this already gives a sheaf.
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21.2 Morphisms as families

We can think of a morphism of schemes f : X → S as a family of schemes parametrized by
S, the elements of the family being the fibers of f .

Example 21.8. A k-algebra is a ring R together with a ring map k → R. A k-ringed space is
a ringed space X together with a morphism X → Spec k.

Example 21.9. Let X = SpecR be an affine scheme. Since SpecZ is the terminal object in the
category of schemes, there is a unique morphism X → SpecZ. The fibers of this morphism
are Spec(R ⊗Z Fp) = Spec(R/pR) over the closed points (p) ∈ SpecZ, and Spec(R ⊗Z Q)
over the generic point (0).

22 2015-03-11: Local properties of morphisms
The general philosophy is to study relative properties (properties of morphisms), not just
absolute properties (properties of schemes).

Definition 22.1 (Properties of morphisms local over the base). Let P be one of the following
properties: affine, quasi-compact, quasi-separated, semi-separated5, separated. We say a
morphism f : X → Y has property P if and only if for any affine open U ⊂ Y , f−1(U) has
property P . See [Stacks, tag 01QL] for more properties of morphisms.

Claim 22.2. It suffices to check this for some affine open cover of Y .

A different pattern is for a property of morphisms to be local over the source. For example:

Definition 22.3. A morphism f : X → Y is locally of finite type if for any affine opens
U = SpecA ⊂ X and V = SpecB ⊂ Y such that f(U) ⊂ V , A is finitely-generated as a
B-algebra.

Claim 22.4. It suffices to check this for some affine open covers {Uα ⊂ X} and {Vα ⊂ Y }
such that f(Uα) ⊆ Vα and

⋃
α Uα = X.

Definition 22.5. A morphism f is of finite type if and only if f is locally of finite type and
quasi-compact.

Remark 22.6. A morphism f : X → Y being of finite type means that for any affine open
V ⊂ Y , f−1(V ) =

⋃n
i=1 SpecAi for some finitely-generated B-algebras Ai.

We may intuitively think of finite-type morphisms as being given locally (on the base) by
a “finite amount of data”. This is true when the base is locally Noetherian, but for arbitrary
schemes, a better-behaved notion is (locally) finite presentation, where the defining ideals are
also required to be finitely-generated.

Definition 22.7 (Relative schemes). Let Y be a scheme. A scheme over Y (or an Y -scheme)
is a morphism of schemes f : X → Y . We also sometimes write X/Y . (If A is a commutative
ring, “scheme over SpecA” may be abbreviated to “scheme over A”.) In other words, the
category of Y -schemes is the slice category Sch/Y .

5A scheme is called semi-separated if the intersection of any two affine open subsets is affine.
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We will often refer to properties of morphisms of schemes as properties of relative schemes.
For example, we will say “X is affine over Y ” to mean that f : X → Y is an affine morphism.
(The phrase “X is an affine Y -scheme” is synonymous, but has more potential for confusion,
so we will avoid it.)

22.1 Varieties

Definition 22.8. Let k be a field. A variety over k is a geometrically6 reduced scheme locally
of finite type over k. More explicitly, a variety is a morphism of schemes f : X → Spec k which
is locally of finite type, hence X has an open cover X =

⋃
α Uα, where each Uα = SpecAα

is an affine scheme with Aα a reduced, finitely-generated k-algebra, and the gluing maps are
k-linear.

A morphism of varieties is just a morphism in Sch/k between varieties. In other words,
the category of k-varieties Var/k embeds fully faithfully into Sch/k.

What does this look like for varieties over a non-algebraically closed field, such as R?
Classically, we think of an affine variety over R as a subset of Cn cut out by polynomial
equations with real coefficients. Maps of real varieties (including gluing maps) must be
polynomials with real coefficients.

Schematically, given an R-variety X → SpecR, we can look at the real points (R-
morphisms SpecR→ X) or the complex points (R-morphisms SpecC→ X).

Example 22.9. The affine line A1
R = SpecR[x], considered as an R-scheme, has R-points

corresponding to (x− c) for c ∈ R, and has C-points corresponding to irreducible quadratic
polynomials in R[x].

23 2015-03-13 through 2015-03-18
[I missed these lectures due to the Arizona Winter School.]

24 2015-03-20: Separated morphisms
Definition 24.1. A morphism f : X → Y of schemes is called separated if the diagonal
∆f : X → X ×Y X is a closed embedding.

Example 24.2. Let f : SpecA → SpecB be a morphism of affine schemes. Then ∆f :
SpecA → SpecA ×SpecB SpecA = Spec(A ⊗B A) corresponds to the multiplication map
A⊗B A→ A, which is surjective. Hence ∆f is a closed embedding, so f is separated.

Example 24.3. Let X be the affine line over k with two origins, i.e., X = U1 ∩ U2 with U1 =
U2 = Spec k[t], and U1 ∩U2 glued along the identity map. Then X ×k X =

⋃
i,j=1,2 Ui ×k Uj.

The preimage in X ×X of the diagonal in A2 is a diagonal line in each Ui × Uj, and hence
is a k-line with four origins, corresponding to elements of {1, 2}2. However, the image of

6If k is not a perfect field, then even if k[x1, . . . , xn]/(f1, . . . , fm) is reduced, k[x1, . . . , xn]/(f1, . . . , fm)
might not be reduced. We will discuss this in more detail later. Note that over a perfect field, there is no
difference between geometrically reduced and reduced.
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∆ : X → X×kX only contains two of these origins, hence is non-closed. Hence, the structure
map X → Spec k is not separated.

Remark 24.4. This has a topological analogue: ifX is a topological space, thenX is Hausdorff
if and only if the diagonal map ∆ : X ↪→ X ×X is a closed embedding.

Proposition 24.5. (1) Separatedness is local over the target.

(2) Separatedness is stable under base change.

Proof. (1) A cover of Y gives compatible covers of X and X ×Y X. One can locally check
the property of being a closed embedding.

(2) Everything base-changes to Z → Y in a compatible way.

Corollary 24.6. Any affine morphism is separated.

Remark 24.7. Any locally closed embedding is affine. Moreover, for any scheme X, the
natural map An

X = X × An → X is affine. In practice, many affine morphisms arise as a
composition Y ↪→ An

X → X, where Y is a closed subscheme of An
X .

Exercise 24.8. Compositions of separated maps are separated.

Let us give a more explicit description of separatedness. Since separatedness is local over
the base, consider a morphism f : X → SpecB and write X =

⋃
α Uα, where Uα = SpecAα.

Then X ×Y X =
⋃
α,β Uα ×B Uβ =

⋃
α,β Spec(Aα ⊗B Aβ). Consider

∆f : X → X ×B X =
⋃
α,β

Uα ×B Uβ.

Then ∆−1
f (Uα×BUβ) = Uα∩Uβ. The map f is separated if and only if Uα∩Uβ → Uα×Y Uβ is

a closed embedding for all α, β. (In particular, Uα∩Uβ must be affine, so f is semi-separated.)

Remark 24.9. To summarize separatedness properties: a morphism f : X → Y is

• separated if and only if ∆f : X → X ×Y X is a closed embedding.

• semi-separated if and only if ∆f : X → X ×Y X is affine.

• quasi-separated if and only if ∆f : X → X ×Y X is quasi-compact.

25 2015-03-23: Separated morphisms, continued
Proposition 25.1. Let f : X → Y be a morphism of schemes. The corresponding diagonal
map ∆f : X → X ×Y X is a locally closed embedding.

In other words, the question of whether a morphism is separated is purely topological: f
is separated if and only if ∆f (X) ⊂ X ×Y X is closed in the Zariski topology.
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Remark 25.2. Assume Y = SpecB is affine. Given an open cover X =
⋃
α Uα by affine

schemes Uα = SpecAα, ∆f is closed if and only if Uα ∩Uβ ↪→ Uα×Y Uβ is closed for all α, β.
Consider the composition

Uα ∩ Uβ ↪→ Uα ×Y Uβ ↪→ Uα ×SpecZ Uβ.

Note that Uα×Y Uβ is a closed subscheme of Uα×SpecZUβ; this is because Aα⊗ZAβ � Aα⊗BAβ
is surjective. Hence, Uα∩Uβ is closed in Uα×Y Uβ if and only if Uα∩Uβ is closed in Uα×SpecZUβ.

Corollary 25.3. Suppose Y is affine. Then X ×Y X ↪→ X ×SpecZ X is a closed embedding.
Therefore, ∆f : X ↪→ X ×Y X is a closed embedding if and only if ∆ : X ↪→ X ×SpecZ X is
a closed embedding. In other words, f is separated if and only if X is separated.

Corollary 25.4. A morphism of schemes f : X → Y is separated if and only if for any affine
open V ⊂ Y , the preimage f−1(V ) is a separated scheme. Moreover, it suffices to check this
for an affine cover.

Here’s another approach to separatedness. A scheme X is separated if and only if, for
any scheme S and any morphism S → X × X, the base change fS : X ×X×X S → S is a
closed embedding.

Given a “test scheme” S, a map f : S → X × X is a pair of morphisms f1, f2 :
S → X. What is the scheme X ×∆,(X×X),f S = X ×X×X S? As a set, X ×X×X S =
{s ∈ S : f1(s) = f2(s)}.

The scheme X is separated if and only if for any S and any maps f1, f2 : S → X, the
subset {s ∈ S : f1(s) = f2(s)} ⊂ S is closed.

Example 25.5. Let X = A1
Z = SpecZ[t]. Let S be a scheme, and choose f1, f2 ∈ Γ(S,OS).

Then {s ∈ S : f1(s) = f2(s)} = Z(f1 − f2) is closed, so A1
Z is separated.

Let us reformulate separatedness once more.

Proposition 25.6. A scheme X is separated if and only if each map f : U → X defined on
a dense locally closed subscheme U ⊂ S has at most one extension to S.

26 2015-03-25: Proper morphisms
Definition 26.1. Let f : X → Y be a morphism of schemes. We say f is universally closed
if for any morphism g : Z → Y , the base-changed morphism fZ : X ×Y Z → Z is closed. A
morphism f : X → Y is proper if f is of finite type, separated, and universally closed.

Example 26.2. Let g : X → Z be a morphism. Consider its graph Γg, which is the preimage
of ∆Z under the morphism (g, idZ) : X × Z → Z × Z. If Z is separated, then Γg is closed.
The projection of Γg onto Z is the image g(X). So, if X is proper and Z is separated, then
for any map g : X → Z, the image g(X) is closed.

Example 26.3. The map A1 → A0 is closed, but not universally closed: it base-changes to
the projection A2 → A1, and the image of {xy = 1} ⊂ A2 under this map is {x 6= 0} ⊂ A1,
which is not closed.
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Proposition 26.4 (Formal properties of proper morphisms).

(1) Properness is Zariski-local on the base.

(2) Properness is stable under base change.

(3) Any composition of proper morphisms is proper.

Example 26.5. Closed embeddings are proper.

Example 26.6 (Projective space). PnZ → SpecZ is proper. What is PnZ? Consider charts
U0, . . . , Un, where Ui = SpecZ[x0

xi
, . . . , xn

xi
], glued by identifying SpecZ[x0

xi
, . . . , xn

xi
, xi
xj

] ⊂
SpecUi with SpecZ[x0

xj
, . . . , xn

xj
,
xj
xi

] ⊂ SpecUj in the obvious way.

27 2015-03-27: Projective morphisms
Theorem 27.1. PnZ → SpecZ is proper.

Definition 27.2. A morphism f : X → Y is projective if f can be written as a composition
X ↪→ Y ×Z PnZ → Y , where X ↪→ Y is a closed embedding.

Corollary 27.3. Projective morphisms are proper.

Remark 27.4. There is also a weaker notion of projectivity: existence of an open cover
Y =

⋃
α Uα such that each Uα ×Y X → Uα is projective.

Definition 27.5. A morphism f : X → Y is quasi-projective if f can be written as a
composition X ↪→ Y ×Z PnZ → Y , where X ↪→ Y is a locally closed embedding.

Corollary 27.6. Quasi-projective morphisms are separated.

Example 27.7. Let X = Z(f1, . . . , fn) ⊂ Pn. Write Di = deg(fi) and

fi(x0, . . . , xn) =
∑

∑
j dj=Di

ad0...dnx
d0
0 · · ·xdnn .

Consider the coefficients ad0...dn as coordinates in AM (where M is the total number of co-
efficients in all fi). We can define the “universal scheme” X ⊂ Pn × AM as Z(f1, . . . , fm)
for “universal” fi (i.e., with indeterminate coefficients). The projection map π : X → AM is
projective.

Given a property P of schemes, we can consider{
ā ∈ AM : π−1(ā) = Xā has property P

}
.

If this is closed in the Zariski topology on X , we say P is a closed property . Many commonly
studied properties of schemes are closed.
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28 2015-04-06: Projective space is proper
Recall that a proper morphism is a morphism of schemes which is of finite type, separated,
and universally closed. Today we prove that projective space is proper.

Theorem 28.1. PN is proper. (That is, the unique morphism PNZ → SpecZ is proper.)

It is clear that PN is of finite type. For separatedness, we need to show that the diagonal
∆ ⊂ PN × PN is closed. This can be checked in charts, or we can write ∆ as the zero locus
of bihomogeneous polynomials xiyj − xjyi, where i, j ∈ {0, . . . , N}.

More precisely, given a k-valued point Spec k → PN × PN , i.e., (x0 : · · · : xN), (y0 : · · · :
yN) ∈ (kN+1 − {0})/k×, we require that the bihomogeneous polynomials xiyj − xjyi vanish
on it. The same schematic point p is the image of many k-valued points: take any field
extension k ⊃ κp. However, vanishing of this equation does not depend on k.

We can also look at the equations in affine charts and rewrite the equations in (non-
homogeneous) coordinates, in which the bihomogeneous polynomial xiyj − xjyi becomes
xi
xj
− yi

yj
. This allows us to define the zero locus as a closed subscheme.

It remains to show that PN is universally closed, i.e., for any scheme S, the morphism
π : PN × S → S is closed. Without loss of generality, S = SpecR is affine, so PN × S = PNR .
Let X ⊂ PNR be a closed subscheme.

We claim X is the zero locus of a family (fα ∈ R[x0, . . . , xN ])α of homogeneous polyno-
mials. (As before, “zero locus” is defined in terms of k-valued points for various fields k.) In
affine charts, since X is closed, X ∩ SpecR[x0

xi
, . . . , xN

xi
] is the zero locus of some polynomials

gβ ∈ R[x0
xi
, . . . , xN

xi
]. Taking fβ = xdeg(gβ)+1gβ for all β and all charts yields the claim.

What is π(X) in terms of equations? Given an algebraically closed field k and a geometric
point s : Spec k → SpecR corresponding to a ring map ϕ : R→ k and lying over a schematic
point p ∈ SpecR, the fiber Xs := X ×SpecR Spec k is given by X ∩ π−1(p). This is empty if
and only if the system of equations ϕ(fα)(x0 : · · · : xN) = 0 has no solutions.

We’ll finish the proof next time.

29 2015-04-08: Projective space is proper, continued
Continuing from last time, if m is the prime ideal corresponding to p, then by the Nullstel-
lensatz, Xs is empty if and only if md ⊂ (ϕ(fα)) for some d ∈ N. The space of degree d poly-
nomials in (ϕ(fα)) is spanned by polynomials of the form ϕ(fα) ·g with deg(g) = d−deg(fα).

Put M := dim(md). There exist α1, . . . , αM and gα1 , . . . , gαM such that (ϕ(fαi) · gαi)Mi=1

are linearly independent vectors in md. The condition is equivalent to a certain M × M
determinant being nonzero.

This determinant makes sense in R, then we apply ϕ and see whether it’s nonzero (i.e.,
whether this determinant is in the kernel of ϕ), which is a Zariski-open condition. So π(X)
has open complement, and hence is closed.
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30 2015-04-10: Valuative criteria
[I was at a conference and missed this class. The subject of this class was the valuative
criteria for separatedness and properness.]

Proposition 30.1 (Valuative criteria). Let f : X → Y be a morphism of schemes such that
X is Noetherian. Then f is separated iff for any valuation ring A with field of fractions K,
any diagram

SpecK X

SpecA Y

ϕ

admits at most one morphism ϕ, and proper iff any such diagram admits exactly one mor-
phism ϕ.

31 2015-04-13: Vector bundles
Let M be a complex manifold. A vector bundle on M consists of a manifold E (the total
space), a map π : E →M , and a vector space structure on π−1(x) for each x ∈M , such that
E is locally trivial (i.e., there is a coverM =

⋃
α Uα such that π−1(Uα) ∼= Uα×Cd compatibly

with π and the vector space structures).
More explicitly, fix a trivialization ϕα : π−1(Uα)

'−→ Uα × Cd. On Uα ∩ Uβ, we require

ϕβ ◦ ϕ−1
α : (Uα ∩ Uβ)× Cd → (Uα ∩ Uβ)× Cd

to be a diffeomorphism compatible with projection to Uα∩Uβ and the vector space structure
on Cd. In other words, ϕβ ◦ ϕ−1

α ∈ GL(d, C∞(Uα ∩ Uβ)). These transition functions must
satisfy the cocycle condition.

To a vector bundle π : E →M , we assign a sheaf E of sections of π: for any open U ⊂M ,

Γ(U,E ) =
{
s : U → E

∣∣ π ◦ s = id
}
.

In fancier language, E is a sheaf of modules over the sheaf of smooth functions OM on M .

Definition 31.1. Let X be a topological space. Let OX be a sheaf of rings on X. A module
over OX is a sheaf of abelian groups E together with a structure of a Γ(U,OX)-module on
each Γ(U,E ), compatible with restriction.

Since a vector bundle E → M is locally trivial on some cover M =
⋃
α Uα, its sheaf

of sections E is a locally free OM -module of finite rank, i.e., E |Uα ∼= (OM |Uα)d as OM |Uα-
modules.

Theorem 31.2. This gives an equivalence of categories

{vector bundles on M} ←→
{
locally free OM -modules

of finite rank

}
.

To prove this, it suffices to show that transition functions for locally free sheaves are also
in GL(d, C∞(Uα ∩ Uβ)).
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32 2015-04-15: Locally free sheaves
Definition 32.1. Let (M,OM) be a ringed space. Let E be a sheaf of OM -modules. We say
E is locally free iff every point of M has a neighborhood U such that E |U ∼= (OM |U)d, the
free OM |U -module of rank d ≥ 0.

Locally free OM -modules form a full subcategory of the category of OM -modules (where
morphisms are morphisms of sheaves that respect the action of OM).

Exercise 32.2. HomOM (OdM ,Od
′
M) = Matd′×d(Γ(M,OM)).

Exercise 32.3. Let E be a locally free sheaf. Then HomOM (OM ,E ) = Γ(M,E ).
This imply a description of locally free sheaves via transition maps: fix an open cover

M =
⋃
α Uα, and on each Uα fix (OM |Uα)dα . If Uα ∩ Uβ 6= ∅, then dα = dβ =: d, and we are

given a transition map in GL(d,Γ(Uα ∩ Uβ,OM)), satisfying the cocycle condition on triple
intersections. Conversely, such data glues to form a locally free sheaf.
Exercise 32.4. Describe morphisms of locally free sheaves in charts.

We have an equivalence of categories

{C-vector bundles} '−→ {locally free sheaves of C∞C -modules}
E 7→ E = sheaf of sections of E.

What is the inverse functor? (It’s not the espace étalé — that’s too big.) As a set, one
can recover the fibers as Ex = (Ex)⊗(OM )x C, where we view C as an (OM)x-module via the
evaluation homomorphism f 7→ f(x) : (OM)x → C.

32.1 The algebraic setting

Definition 32.5. Let X be a scheme. A vector bundle on X is a morphism of schemes
π : E → X such that every point of X has a Zariski-open neighborhood U such that
π−1(U) ∼= U × Ad = Ad

U with transition maps linear in the coordinates of Ad, together with
the structure of a “family of vector spaces” on E (e.g., an addition map E ×X E → E).

In this setting as well, there is an equivalence of categories between locally free OX-
modules and vector bundles on X.

33 2015-04-17: Examples of line bundles
Example 33.1 (Trivial line bundle). Let X be a scheme. Then endomorphisms of the trivial
line bundle X × A1 → X correspond to global functions f ∈ Γ(X,OX), acting by (x, t) 7→
(x, f(x)t).
Example 33.2 (Tautological line bundle). Let E = {(t, `) ∈ An+1 × Pn : t ∈ `} ⊂ An+1 × Pn,
where we view Pn as the space of lines through the origin in An+1. The projection (t, `) 7→
` : E → Pn is a line bundle, called the tautological line bundle. Its sheaf of sections is

U 7→ {(t0, . . . , tn) ∈ Γ(U,OPn) : xitj − xjti = 0} ,

the sheaf of “functions of homogeneous degree −1 on U ”.
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34 2015-04-24: Picard groups
Earlier, we discussed the operations of dual and tensor product on line bundles, which always
produce another line bundle. Moreover, L ⊗ L∨ = OX for any line bundle L. Hence, the
set of isomorphism classes of line bundles on X is a group under tensor product, called the
Picard group PicX.
Example 34.1. PicPn ∼= Z is freely generated by OPn(1).
Example 34.2. Let X = Spec k, where k is a field (not necessarily algebraically closed). A
sheaf of OX-modules is the same as a k-vector space. The locally free OX-modules of finite
rank correspond to finite-dimensional k-vector spaces. Finally, PicX is the trivial group.
Example 34.3. Let X = SpecR, where R is a Dedekind domain. Then PicX ∼= ClR.

How to assign a vector bundle to a sheaf? Its fiber over a point x is the stalk Ex, which
is a free OX,x-module.

35 2015-04-04: Vector fields and derivations
Let R be a commutative ring. Vector fields on SpecR are given by k-linear derivations
R → R, i.e., additive maps δ : R → R such that δ(ab) = aδ(b) + bδ(a) and δ|k = 0. The
R-module of all derivations R→ R is denoted Der(R,R). Note that

Der(R,R) = HomR(Ω1
R/k, R).

Caution 35.1. Generally speaking, Ω1
R/k 6= HomR(Der(R,R), R) (but this is true if R/k is

smooth).
What happens if we pass from R to R[f−1]? We have a natural map

Ω1
R/k ⊗R R[f−1] = Ω1

R/k[f
−1]→ Ω1

R[f−1]/k

given by sending af−m to d(af−m).

Proposition 35.2. This is an isomorphism.

Moreover,

HomR[f−1](Ω
1
R[f−1]/k, R[f−1]) = Der(R[f−1], R[f−1]) = Der(R,R[f−1]) = HomR(Ω1

R/k, R[f−1]) = HomR(Ω1
R/k, R)[f−1].
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