Math 764. Homework 8

Due Wednesday, April 15th

1. Let X be a variety. A sheaf of ideals $\mathcal{I} \subset \mathcal{O}_X$ is said to be *radical* if for every open $U \subset X$, $\mathcal{I}(U) \subset \mathcal{O}_X(U)$ is a radical ideal.

Show that \mathcal{I} is radical if and only if $\mathcal{I}_x \subset \mathcal{O}_{X,x}$ is radical for every point $x \in X$.

- **2.** Let X be a variety. Show that we have an inclusion-reversing correspondence between closed subvarieties $Y \subset X$ and quasicoherent radical ideal sheaves $\mathcal{I} \subset \mathcal{O}_X$.
- **3.** (From the video) Let $f: X \to Y$ be a morphism of affine varieties, so that f corresponds to a homomorphism of k-algebras $f^*: k[Y] \to k[X]$. Show that the direct image f_* on quasi-coherent sheaves corresponds to the restriction of scalars on modules under the equivalence between quasicoherent sheaves on an affine variety and modules over its coordinate ring.
- **4.** (Also from the video) Let $f: X \to Y$ be a map of varieties that is quasi-compact: the preimage of a quasi-compact open subset is quasi-compact. Prove that the direct image f_* preserves quasi-coherence.
- **5.** Let X be a topological space, and let \mathcal{F} , \mathcal{G} be two sheaves of X (let's say they are sheaves of sets, although the claim holds for sheaves in any category). Define a pre-sheaf of sets $\mathcal{H}om_X(\mathcal{F},\mathcal{G})$ on X by

$$\mathcal{H}om_X(\mathcal{F},\mathcal{G})(U) := \operatorname{Hom}_U(\mathcal{F}|_U,\mathcal{G}|_U),$$

where on the right we have the set of morphisms of sheaves on U.

Show that $\mathcal{H}om_X(\mathcal{F},\mathcal{G})$ is in fact a sheaf: the sheaf of morphisms between \mathcal{F} and \mathcal{G} . (Informally, the claim is that morphisms of sheaves can be constructed locally.)

6. Let now X be a variety and suppose that \mathcal{F} , \mathcal{G} are sheaves of \mathcal{O}_X -modules. We define the sheaf of homomorphisms of \mathcal{O}_X -modules by the same formula as in the previous problem:

$$\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})(U) := \operatorname{Hom}_{\mathcal{O}_U}(\mathcal{F}|_U,\mathcal{G}|_U),$$

where on the right we have the set of morphisms of \mathcal{O}_U -modules. Note that the sheaf of homomorphisms is naturally a \mathcal{O}_X -module.

Prove that if \mathcal{G} is quasicoherent and \mathcal{F} is *coherent*, then $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})$ is quasicoherent, and that for any point x, we have a natural isomorphism of stalks:

$$\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})_x = \mathrm{Hom}_{\mathcal{O}_{X,x}}(\mathcal{F}_x,\mathcal{G}_x).$$

(Side question: what goes wrong if \mathcal{F} is only quasi-coherent?)