Math 764. Homework 6

Due Friday, March 10th

Sheaves of modules on ringed spaces.

Let (X, \mathcal{O}_X) be a ringed space, and let \mathcal{F} and \mathcal{G} be sheaves of \mathcal{O}_X -modules. The tensor product of $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}$ is the sheafification of the presheaf

$$U \mapsto \mathcal{F}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{G}(U).$$

1. Prove that the stalks of $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}$ are given by the tensor product:

$$(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G})_x = \mathcal{F}_x \otimes_{\mathcal{O}_{X,x}} \mathcal{G}_x,$$

where $x \in X$. Conclude that the tensor product is a right exact functor (in each of the two arguments).

2. Suppose that \mathcal{F} is locally free of finite rank. (That is to say, every point $x \in X$ has a neighborhood U such that $\mathcal{F}|_U \simeq (\mathcal{O}_U)^n$. Prove that there exists a natural isomorphism

$$\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{G}) = \mathcal{G} \otimes \mathcal{F}^{\vee}.$$

Here $\mathcal{F}^{\vee} = \mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{O}_X)$ is the dual of the locally free sheaf \mathcal{F} , and $\mathcal{H}om$ is the sheaf of homomorphisms. (Note that \mathcal{G} is not assumed to be quasi-coherent.)

3. (Projection formula) Let $f:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ be a morphism of ringed spaces. Suppose \mathcal{F} is an \mathcal{O}_X -module and \mathcal{G} is a locally free \mathcal{O}_Y -module of finite rank. Construct a natural isomorphism

$$f_*(\mathcal{F} \otimes_{\mathcal{O}_X} f^*\mathcal{G}) \simeq f_*(\mathcal{F}) \otimes_{\mathcal{O}_Y} \mathcal{G}.$$

Coherent sheaves on a noetherian scheme

- **4.** Let \mathcal{F} be a coherent sheaf on a locally noetherian scheme X.
- (a) Show that \mathcal{F} is locally free if and only if its stalks \mathcal{F}_x are free $\mathcal{O}_{X,x}$ -modules for all $x \in X$.
- (b) Show that \mathcal{F} is locally free of rank one if and only if it is *invertible*: there exists a coherent sheaf \mathcal{G} such that $\mathcal{F} \otimes \mathcal{G} \simeq \mathcal{O}_X$.
- 5. As in the previous problem, supposed \mathcal{F} be a coherent sheaf on a locally noetherian scheme X. The fiber of \mathcal{F} at a point $x \in X$ is the k(x)-vector space $i^*\mathcal{F}$ for the natural map $i: Spec(k(x)) \to X$ (where k(x) is the residue field of $x \in X$). Denote by $\phi(x)$ the dimension $\dim_{k(x)} i^*\mathcal{F}$.
- (a) Show that the function $\phi(x)$ is upper semi-continuous: for every n, the set $\{x \in X : \phi(x) \ge n\}$ is closed.
- (b) Suppose X is reduced. Show that \mathcal{F} is locally free if and only if $\phi(x)$ is constant on each connected component of X. (Do you see why we impose the assumption that X is reduced here?)
- **6.** Let X be a locally noetherian scheme and let $U \subset X$ be an open subset. Show that any coherent sheaf \mathcal{F} on U can be extended to a coherent sheaf on $\overline{\mathcal{F}}$ on X. (We say that $\overline{\mathcal{F}}$ is an extension of \mathcal{F} if $\overline{\mathcal{F}}|_U \simeq \mathcal{F}$.)

(If you need a hint for this problem, look at Problem II.5.15 in Hartshorne.)

1