Math 222 Week 4 Homework - Solutions

I.2.3: The key idea here is what they mean by the inequality in each case. In a, it is inequalities of numbers, in b it is inequalities of functions, and in c it is ambiguous. None of the inequalities are true.

By direct computation, the integral in a is $\left[x - \frac{x^3}{3}\right]_2^4 = \left(4 - \frac{64}{3}\right) - \left(2 - \frac{8}{3}\right) = -\frac{50}{3}$. Alternatively, we could use the fact that $1 - x^2$ is always negative on the interval [2, 4], so the integral in a must be negative, so the inequality in a is false.

For part b, note that we are integrating $(1-x^2)$ with respect to t, from 2 to 4. Therefore, the integral is $(1-x^2)(4-2) = 2(1-x^2)$. As a function, this is not always positive, so the inequality in b is false.

For part c, we are finding $\int (1+x^2)dx = x + \frac{x^3}{3} + C$. However, this is not a well-defined function, as it depends on what C we pick. Therefore, it doesn't make sense to ask if $x + \frac{x^3}{3} + C > 0$, so this inequality can't be true.

I.7.5: Let $I_n = \int (\sin x)^n dx$. From equation 6.3, we have the formula:

$$I_n = \frac{-1}{n}\sin^{n-1}(x)\cos(x) + \frac{n-1}{n}I_{n-2}$$

We need to use this formula to compute $\int \sin^2(x) dx$. Using the formula, we get:

$$\int \sin^2(x)dx = I_2 = \frac{-1}{2}\sin^1(x)\cos(x) + \frac{1}{2}I_0$$
$$= \frac{-1}{2}\sin(x)\cos(x) + \frac{1}{2}\int \sin^0(x)dx$$
$$= \frac{-1}{2}\sin(x)\cos(x) + \frac{1}{2}x + C$$

Alternatively, we can integrate $\sin^2(x)$ using the half angle formula as follows:

$$\int \sin^2(x)dx = \int \frac{1}{2}(1 - \cos(2x))dx$$

$$= \frac{1}{2} \int (1 - \cos(2x))dx$$

$$= \frac{1}{2}x - \frac{1}{4}\sin(2x) + C$$

$$= \frac{1}{2}x - \frac{1}{2}\sin(x)\cos(x) + C$$

The last step was using the fact that $\sin(2x) = 2\sin(x)\cos(x)$. We get the same answer as before.

I.7.20: Let $I_n = \int \frac{dx}{(1+x^2)^n}$. If you look at the example in 6.4, you will find that as long as $n \neq 0$, the reduction formula still works. In the case where n = 0, this becomes $\int \frac{dx}{1}$, which is just x + C. Letting $n = -\frac{1}{2}$, we get:

$$\int \sqrt{1+x^2} dx = \int (1+x^2)^{1/2} dx = \int \frac{dx}{(1+x^2)^{-1/2}} = I_{-1/2}$$

Additionally, we have:

$$\int \frac{dx}{\sqrt{1+x^2}} = \int \frac{dx}{(1+x^2)^{1/2}} = I_{1/2}$$

So, using the reduction formula to compare $I_{1/2}$ and $I_{-1/2}$, we have:

$$\begin{split} I_{1/2} &= I_{-1/2+1} = \frac{1}{2(-1/2)} \frac{x}{(1+x^2)^{-1/2}} + \frac{2(-1/2)-1}{2(-1/2)} I_{-1/2} \\ &\to I_{1/2} = -x\sqrt{1+x^2} + 2I_{-1/2} \end{split}$$

I.7.21: We use integration by parts to integrate $\frac{1}{x}$. Let $F = \frac{1}{x}$, G' = 1. Then $F' = \frac{-1}{x^2}$, G = x. So, we get:

$$\int \frac{1}{x} dx = FG - \int F'Gdx$$
$$= \frac{1}{x}x - \int \frac{-1}{x^2} x dx$$
$$= 1 + \int \frac{1}{x} dx$$

Subtracting, we get $\int \frac{1}{x} dx - \int \frac{1}{x} dx = 1$. This is not wrong though! Remember that antiderivatives can be different up to a constant. So, let c_1 be the constant for the first integral, and c_2 be the constant for the second.

Then $\int \frac{1}{x} dx - \int \frac{1}{x} dx = c_1 - c_2$, a constant. It does not have to equal 0, so the equation from before makes sense. It just tells us that the two constants c_1, c_2 differ by 1.

I.9.15: We wish to find $\int \frac{e^x}{\sqrt{1+e^{2x}}} dx$.

First, let $u = e^x$. Then $x = \ln(u)$, so $dx = \frac{1}{u}du$. The integral therefore becomes:

$$\int \frac{u}{\sqrt{1+u^2}} \frac{1}{u} du = \int \frac{1}{\sqrt{1+u^2}} du$$

We now have to do another substitution to get rid fo the square root. Let $u = \tan(\theta)$, for $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$. Then $du = \sec^2(\theta)d\theta$. Because $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$, $\sec(\theta) > 0$, so $\sqrt{1 + u^2} = \sqrt{1 + \tan^2(\theta)} = \sec(\theta)$. The integral becomes:

$$\int \frac{1}{\sqrt{1+u^2}} du = \int \frac{\sec^2(\theta)}{\sec(\theta)} d\theta$$
$$= \int \sec(\theta) d\theta$$
$$= \ln|\sec(\theta) + \tan(\theta)| + C$$

We know that $tan(\theta) = u = e^x$, and $sec(\theta) = \sqrt{1 + u^2} = \sqrt{1 + e^{2x}}$, so the final answer is:

$$\ln |\sqrt{1+e^{2x}}+e^x| + C$$

I.13.3: We want to find $\int \sqrt{1+x^2}dx$. To get rid of the square root, we use a rational substitution. Recall $U(t) = \frac{1}{2}(t+\frac{1}{t}), V(t) = \frac{1}{2}(t-\frac{1}{t})$. Also recall $U^2 = V^2 + 1$. We do the substitution $x = V, t \ge 1$. So, dx = V'dt, and our integral becomes:

$$\int \sqrt{1+x^2} dx = \int \sqrt{1+V^2} V' dt = \int UV' dt$$

$$= \int \frac{1}{2} (t+\frac{1}{t}) \frac{1}{2} (1+\frac{1}{t^2}) dt$$

$$= \frac{1}{4} \int t + \frac{2}{t} + \frac{1}{t^3} dt$$

$$= \frac{1}{4} \left(\frac{t^2}{2} + 2\ln|t| - \frac{1}{2t^2} \right) + C$$

$$= \frac{1}{8} t^2 - \frac{1}{8} t^{-2} + \frac{1}{2} \ln|t| + C$$

The easiest way to substitute back in the x is to use the facts (given in the book):

1.
$$t = U + V$$

2.
$$\frac{1}{t} = U - V$$

So, our expression from before becomes:

$$\frac{1}{8}(U+V)^2 - \frac{1}{8}(U-V)^2 + \frac{1}{2}\ln|U+V| + C$$

$$= \frac{1}{8}(U^2 + 2UV + V^2) - \frac{1}{8}(U^2 - 2UV + V^2) + \frac{1}{2}\ln|U+V| + C$$

$$= \frac{1}{2}UV + \frac{1}{2}\ln|U+V| + C$$

Finally, we can use the fact that V=x and $U=\sqrt{1-V^2}=\sqrt{1-x^2}$. So the final answer is:

$$\frac{1}{2}x\sqrt{1-x^2} + \frac{1}{2}\ln|x+\sqrt{1-x^2}| + C$$

Alternatively, you could have used the substitution $x = \tan(\theta)$, and then figured out how to integrate $\sec^3(\theta)$.

I.13.4: We want to integrate $\frac{1}{\sqrt{2x-x^2}}$. We first complete the square.

We get
$$2x - x^2 = -(x^2 - 2x) = -((x - 1)^2 - 1) = 1 - (x - 1)^2$$
. Our integral becomes $\int \frac{dx}{\sqrt{1 - (x - 1)^2}}$.

This looks like the derivative of $\arcsin(x-1)$. If you do the substitution, you find that this integrates to $\arcsin(x-1) + C$.

I.13.7: We want to integrate $\frac{1}{\sqrt{4-x^2}}$. This looks a lot like the derivative of arcsin. We factor out a 4 from the square root to get:

$$\int \frac{dx}{\sqrt{4-x^2}} = \int \frac{dx}{2\sqrt{1-(x/2)^2}}$$
$$= \int \frac{du}{\sqrt{1-u^2}}$$

This last step was done using the substitution $u = \frac{x}{2}$. This integrates to $\arcsin(u) + C$, which equals $\arcsin(\frac{x}{2}) + C$.

I.13.15: We want to find $\int_1^{\sqrt{3}} \frac{dx}{x^2+1}$. Note that the function within the integral is the derivative of $\arctan(x)$, so the integral equals $\arctan(\sqrt{3}) - \arctan(1)$, where we take \arctan with range in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

First, we calculate $\arctan(\sqrt{3})$. This equals the angle θ in $(-\frac{\pi}{2}, \frac{\pi}{2})$ such that $\tan(\theta) = \sqrt{3}$. By basic trigonometry, we know this is when $\theta = \frac{\pi}{3}$, so $\arctan(\sqrt{3}) = \frac{\pi}{3}$. Next, we find $\arctan(1)$. This equals the angle θ such that $\tan(\theta) = 1$, so this equals $\frac{\pi}{4}$.

The final answer is $\frac{\pi}{3} - \frac{\pi}{4}$.

I.15.3: Let $u = x^2 - 1$. Then du = 2xdx, so the integral becomes:

$$\int \frac{x}{\sqrt{x^2 - 1}} dx = \int \frac{\frac{1}{2} du}{\sqrt{u}}$$
$$= \sqrt{u + C}$$
$$= \sqrt{x^2 - 1} + C$$

I.15.8: In this problem, we have a ratio of polynomials, so we use polynomial long division and partial fractions. First, we use polynomial long division since the numerator does not have smaller degree, getting:

So,
$$\frac{x^4}{x^2 - 36} = x^2 + 36 + \frac{1296}{x^2 - 36}$$
. So we get:

$$\int \frac{x^4}{x^2 - 36} dx = \int x^2 + 36 + \frac{1296}{x^2 - 36} dx$$
$$= \frac{x^3}{3} + 36x + 1296 \int \frac{1}{x^2 - 36} dx$$

We do partial fractions on $\frac{1}{x^2-36} = \frac{1}{(x-6)(x+6)}$. This must equal $\frac{A}{x-6} + \frac{B}{x+6}$ for some A, B. The heavyside method say $A = \frac{1}{x+6} \Big|_{x=6} = \frac{1}{12}$, and $B = \frac{1}{x-6} \Big|_{x=-6} = \frac{-1}{12}$.

So, the fraction equals $\frac{1}{12(x-6)} - \frac{1}{12(x+6)}$. Integrating this, we get $\frac{1}{12} \ln|x-6| - \frac{1}{12} \ln|x+6| + C$.

The final answer is $\frac{x^3}{3} + 36x + 1296 \left(\frac{1}{12} \ln|x - 6| - \frac{1}{12} \ln|x + 6| \right) + C$.

I.15.34: We have to use partial fractions in both cases.

For the first, we know:

$$\frac{1}{x(x-1)(x-2)(x-3)} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x-2} + \frac{D}{x-3}$$

We can use the heavyside method to calculate the coefficients. Using it, we get:

•
$$A = \frac{1}{(0-1)(0-2)(0-3)} = \frac{-1}{6}$$

•
$$B = \frac{1}{(1)(1-2)(1-3)} = \frac{1}{2}$$

•
$$C = \frac{1}{(2)(2-1)(2-3)} = \frac{-1}{2}$$

•
$$D = \frac{1}{(3)(3-1)(3-2)} = \frac{1}{6}$$

Integrating, we get $\frac{-1}{6} \ln |x| + \frac{1}{2} \ln |x-1| - \frac{1}{2} \ln |x-2| + \frac{1}{6} \ln |x-3| + E$.

For the second, we do almost exactly the same thing. The only thing that is potentially different are the coefficients. Using the heavyside method, they are calculated as follows:

•
$$A = \frac{(0)^3 + 1}{(0-1)(0-2)(0-3)} = \frac{-1}{6}$$

•
$$B = \frac{(1)^3 + 1}{(1)(1-2)(1-3)} = 1$$

•
$$C = \frac{(2)^3 + 1}{(2)(2-1)(2-3)} = \frac{-9}{2}$$

•
$$D = \frac{(3)^3 + 1}{(3)(3-1)(3-2)} = \frac{28}{6} = \frac{14}{3}$$

Integrating, we get $\frac{-1}{6} \ln |x| + \ln |x-1| - \frac{9}{2} \ln |x-2| + \frac{14}{3} \ln |x-3| + E$.

I.15.35: This is a ratio of polynomials, so we'd like to use partial fractions. To do that, we need to factor the denominator, $1 + x + x^2 + x^3$. As the book hints, this equals $1 + x + x^2(1 + x)$. Factoring out a (1+x), this equals $(1+x)(1+x^2)$. Note that $1+x^2$ cannot be broken up any more, as we would have to use $\sqrt{-1}$. So, the two factors are $1+x, 1+x^2$.

Based on the method of partial fractions, we find:

$$\frac{1}{1+x+x^2+x^3} = \frac{1}{(x+1)(x^2+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+1}$$

We can't use the heavyside method because there is a quadratic factor. So, clearing the denominators instead, we get:

$$1 = A(x^{2} + 1) + (Bx + C)(x + 1)$$
$$= Ax^{2} + A + Bx^{2} + Bx + Cx + C$$
$$= x^{2}(A) + x(B + C) + A + C$$

We must have A = 0, B + C = 0, A + C = 1. so, A = 0, B = -1, C = 1. Therefore, our integral is:

$$\int \frac{dx}{1+x+x^2+x^3} = \int \frac{-x+1}{x^2+1} dx$$
$$= -\int \frac{x}{x^2+1} dx + \frac{1}{x^2+1}$$

To solve the first integral, we use $u = x^2 + 1$, so du = 2xdx. The integral becomes:

$$-\int \frac{\frac{1}{2}du}{u} = -\frac{1}{2}\ln|u| = -\frac{1}{2}\ln|x^2 + 1|$$

The second integral is simply $\arctan(x)$, so the final answer is $-\frac{1}{2} \ln|x^2 + 1| + \arctan(x) + E$.

I.15.38: Once you've drawn the graph, note that it is symmetric around the x-axis. That is, you can reflect it to get the same graph. What this means is that any area above the x-axis (positive area) cancels out with the area below the x-axis, so the area under the curve is 0.

I.15.43: While the book claims that the function F(x) is an anti-derivative for f(x), it is not! An antiderivative needs to have the correct derivative on the entire interval [0,2]. But F(x) is not differentiable at the point x=1. In fact, F(x) is not even continuous here!. You get different values whether you are approaching 1 from the left or the right.

We have:

$$\lim_{x \to 1^{-}} F(x) = \frac{1}{2}x^{2} - x \Big|_{x=1} = -\frac{1}{2}$$

$$\lim_{x \to 1^{+}} F(x) = x - \frac{1}{2}x^{2} \Big|_{x=1} = \frac{1}{2}$$

Since F(x) is not continuous at 1, it is not differentiable for 1, and so is not an antiderivative for f(x) on the interval [0,2].

I.15.44: The issue here comes from the substitution. Remember that x has domain [-1,1], and $u=1-x^2$. Therefore, the book claims that $x=\sqrt{1-u}$. However, $\sqrt{1-u}\geq 0$ for all u, but x needs to be negative at times. This substitution does not work because it does not pass the horizontal line test on the interal [-1,1]. When you graph $u=1-x^2$ on this interval, you will see that it fails this test.