
Math 222 Week 4 Homework - Solutions

I.2.3: The key idea here is what they mean by the inequality in each case. In a, it is inequalities of
numbers, in b it is inequalities of functions, and in c it is ambiguous. None of the inequalities are true.

By direct computation, the integral in a is

[
x − x3

3

]4
2

= (4 − 64
3 ) − (2 − 8

3) = −50
3 . Alternatively, we

could use the fact that 1 − x2 is always negative on the interval [2, 4], so the integral in a must be
negative, so the inequality in a is false.

For part b, note that we are integrating (1− x2) with respect to t, from 2 to 4. Therefore, the integral
is (1− x2)(4− 2) = 2(1− x2). As a function, this is not always positive, so the inequality in b is false.

For part c, we are finding
∫

(1 + x2)dx = x + x3

3 + C. However, this is not a well-defined function,

as it depends on what C we pick. Therefore, it doesn’t make sense to ask if x + x3

3 + C > 0, so this
inequality can’t be true.

I.7.5: Let In =
∫

(sinx)ndx. From equation 6.3, we have the formula:

In =
−1

n
sinn−1(x) cos(x) +

n− 1

n
In−2

We need to use this formula to compute
∫

sin2(x)dx. Using the formula, we get:∫
sin2(x)dx = I2 =

−1

2
sin1(x) cos(x) +

1

2
I0

=
−1

2
sin(x) cos(x) +

1

2

∫
sin0(x)dx

=
−1

2
sin(x) cos(x) +

1

2
x+ C

Alternatively, we can integrate sin2(x) using the half angle formula as follows:∫
sin2(x)dx =

∫
1

2
(1− cos(2x))dx

=
1

2

∫
(1− cos(2x))dx

=
1

2
x− 1

4
sin(2x) + C

=
1

2
x− 1

2
sin(x) cos(x) + C

The last step was using the fact that sin(2x) = 2 sin(x) cos(x). We get the same answer as before.
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I.7.20: Let In =
∫

dx
(1+x2)n

. If you look at the example in 6.4, you will find that as long as n 6= 0, the

reduction formula still works. In the case where n = 0, this becomes
∫
dx
1 , which is just x+C. Letting

n = −1
2 , we get: ∫ √

1 + x2dx =

∫
(1 + x2)1/2dx =

∫
dx

(1 + x2)−1/2
= I−1/2

Additionally, we have: ∫
dx√

1 + x2
=

∫
dx

(1 + x2)1/2
= I1/2

So, using the reduction formula to compare I1/2 and I−1/2, we have:

I1/2 = I−1/2+1 =
1

2(−1/2)

x

(1 + x2)−1/2
+

2(−1/2)− 1

2(−1/2)
I−1/2

→ I1/2 = −x
√

1 + x2 + 2I−1/2

I.7.21: We use integration by parts to integrate
1

x
. Let F = 1

x , G
′ = 1. Then F ′ = −1

x2
, G = x. So, we

get: ∫
1

x
dx = FG−

∫
F ′Gdx

=
1

x
x−

∫
−1

x2
xdx

= 1 +

∫
1

x
dx

Subtracting, we get
∫

1
xdx−

∫
1
xdx = 1. This is not wrong though! Remember that antiderivatives can

be different up to a constant. So, let c1 be the constant for the first integral, and c2 be the constant
for the second.

Then
∫

1
xdx −

∫
1
xdx = c1 − c2, a constant. It does not have to equal 0, so the equation from before

makes sense. It just tells us that the two constants c1, c2 differ by 1.

I.9.15: We wish to find

∫
ex√

1 + e2x
dx.

First, let u = ex. Then x = ln(u), so dx = 1
udu. The integral therefore becomes:∫

u√
1 + u2

1

u
du =

∫
1√

1 + u2
du

We now have to do another substitution to get rid fo the square root. Let u = tan(θ), for −π
2 < θ < π

2 .

Then du = sec2(θ)dθ. Because −π
2 < θ < π

2 , sec(θ) > 0, so
√

1 + u2 =
√

1 + tan2(θ) = sec(θ). The
integral becomes: ∫

1√
1 + u2

du =

∫
sec2(θ)

sec(θ)
dθ

=

∫
sec(θ)dθ

= ln | sec(θ) + tan(θ)|+ C
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We know that tan(θ) = u = ex, and sec(θ) =
√

1 + u2 =
√

1 + e2x, so the final answer is:

ln |
√

1 + e2x + ex|+ C

I.13.3: We want to find
∫ √

1 + x2dx. To get rid of the square root, we use a rational substitution.
Recall U(t) = 1

2(t+ 1
t ), V (t) = 1

2(t− 1
t ). Also recall U2 = V 2 + 1. We do the substitution x = V, t ≥ 1.

So, dx = V ′dt, and our integral becomes:∫ √
1 + x2dx =

∫ √
1 + V 2V ′dt =

∫
UV ′dt

=

∫
1

2
(t+

1

t
)
1

2
(1 +

1

t2
)dt

=
1

4

∫
t+

2

t
+

1

t3
dt

=
1

4

(
t2

2
+ 2 ln |t| − 1

2t2

)
+ C

=
1

8
t2 − 1

8
t−2 +

1

2
ln |t|+ C

The easiest way to substitute back in the x is to use the facts (given in the book):

1. t = U + V

2. 1
t = U − V

So, our expression from before becomes:

1

8
(U + V )2 − 1

8
(U − V )2 +

1

2
ln |U + V |+ C

=
1

8
(U2 + 2UV + V 2)− 1

8
(U2 − 2UV + V 2) +

1

2
ln |U + V |+ C

=
1

2
UV +

1

2
ln |U + V |+ C

Finally, we can use the fact that V = x and U =
√

1− V 2 =
√

1− x2. So the final answer is:

1

2
x
√

1− x2 +
1

2
ln |x+

√
1− x2|+ C

Alternatively, you could have used the substitution x = tan(θ), and then figured out how to integrate
sec3(θ).

I.13.4: We want to integrate
1√

2x− x2
. We first complete the square.

We get 2x−x2 = −(x2−2x) = −((x−1)2−1) = 1− (x−1)2. Our integral becomes

∫
dx√

1− (x− 1)2
.

This looks like the derivative of arcsin(x− 1). If you do the substitution, you find that this integrates
to arcsin(x− 1) + C.
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I.13.7: We want to integrate 1√
4−x2 . This looks a lot like the derivative of arcsin. We factor out a 4

from the square root to get: ∫
dx√

4− x2
=

∫
dx

2
√

1− (x/2)2

=

∫
du√

1− u2

This last step was done using the substitution u = x
2 . This integrates to arcsin(u) + C, which equals

arcsin(x2 ) + C.

I.13.15: We want to find
∫ √3
1

dx

x2 + 1
. Note that the function within the integral is the derivative

of arctan(x), so the integral equals arctan(
√

3) − arctan(1), where we take arctan with range in the
interval (−π

2 ,
π
2 ).

First, we calculate arctan(
√

3). This equals the angle θ in (−π
2 ,

π
2 ) such that tan(θ) =

√
3. By basic

trigonometry, we know this is when θ = π
3 , so arctan(

√
3) = π

3 . Next, we find arctan(1). This equals
the angle θ such that tan(θ) = 1, so this equals π

4 .

The final answer is π
3 −

π
4 .

I.15.3: Let u = x2 − 1. Then du = 2xdx, so the integral becomes:∫
x√

x2 − 1
dx =

∫ 1
2du√
u

=
√
u+ C

=
√
x2 − 1 + C

I.15.8: In this problem, we have a ratio of polynomials, so we use polynomial long division and partial
fractions. First, we use polynomial long division since the numerator does not have smaller degree,
getting:

x2 + 36

x2 − 36
)

x4

− x4 + 36x2

36x2

− 36x2 + 1296

1296

So,
x4

x2 − 36
= x2 + 36 +

1296

x2 − 36
. So we get:

∫
x4

x2 − 36
dx =

∫
x2 + 36 +

1296

x2 − 36
dx

=
x3

3
+ 36x+ 1296

∫
1

x2 − 36
dx
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We do partial fractions on 1
x2−36 = 1

(x−6)(x+6) . This must equal A
x−6 + B

x+6 for some A,B. The heavyside

method say A = 1
x+6

∣∣∣∣
x=6

= 1
12 , and B = 1

x−6

∣∣∣∣
x=−6

= −1
12 .

So, the fraction equals 1
12(x−6) −

1
12(x+6) . Integrating this, we get 1

12 ln |x− 6| − 1
12 ln |x+ 6|+ C.

The final answer is
x3

3
+ 36x+ 1296

(
1
12 ln |x− 6| − 1

12 ln |x+ 6|
)

+ C.

I.15.34: We have to use partial fractions in both cases.

For the first, we know:

1

x(x− 1)(x− 2)(x− 3)
=
A

x
+

B

x− 1
+

C

x− 2
+

D

x− 3

We can use the heavyside method to calculate the coefficients. Using it, we get:

• A =
1

(0− 1)(0− 2)(0− 3)
=
−1

6

• B =
1

(1)(1− 2)(1− 3)
=

1

2

• C =
1

(2)(2− 1)(2− 3)
=
−1

2

• D =
1

(3)(3− 1)(3− 2)
=

1

6

Integrating, we get
−1

6
ln |x|+ 1

2
ln |x− 1| − 1

2
ln |x− 2|+ 1

6
ln |x− 3|+ E.

For the second, we do almost exactly the same thing. The only thing that is potentially different are
the coefficients. Using the heavyside method, they are calculated as follows:

• A =
(0)3 + 1

(0− 1)(0− 2)(0− 3)
=
−1

6

• B =
(1)3 + 1

(1)(1− 2)(1− 3)
= 1

• C =
(2)3 + 1

(2)(2− 1)(2− 3)
=
−9

2

• D =
(3)3 + 1

(3)(3− 1)(3− 2)
=

28

6
=

14

3

Integrating, we get
−1

6
ln |x|+ ln |x− 1| − 9

2
ln |x− 2|+ 14

3
ln |x− 3|+ E.

I.15.35: This is a ratio of polynomials, so we’d like to use partial fractions. To do that, we need to
factor the denominator, 1 + x + x2 + x3. As the book hints, this equals 1 + x + x2(1 + x). Factoring
out a (1 +x), this equals (1 +x)(1 +x2). Note that 1 +x2 cannot be broken up any more, as we would
have to use

√
−1. So, the two factors are 1 + x, 1 + x2.
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Based on the method of partial fractions, we find:

1

1 + x+ x2 + x3
=

1

(x+ 1)(x2 + 1)
=

A

x+ 1
+
Bx+ C

x2 + 1

We can’t use the heavyside method because there is a quadratic factor. So, clearing the denominators
instead, we get:

1 = A(x2 + 1) + (Bx+ C)(x+ 1)

= Ax2 +A+Bx2 +Bx+ Cx+ C

= x2(A) + x(B + C) +A+ C

We must have A = 0, B + C = 0, A+ C = 1. so, A = 0, B = −1, C = 1. Therefore, our integral is:∫
dx

1 + x+ x2 + x3
=

∫
−x+ 1

x2 + 1
dx

= −
∫

x

x2 + 1
dx+

1

x2 + 1

To solve the first integral, we use u = x2 + 1, so du = 2xdx. The integral becomes:

−
∫ 1

2du

u
= −1

2
ln |u| = −1

2
ln |x2 + 1|

The second integral is simply arctan(x), so the final answer is −1

2
ln |x2 + 1|+ arctan(x) + E.

I.15.38: Once you’ve drawn the graph, note that it is symmetric around the x-axis. That is, you can
reflect it to get the same graph. What this means is that any area above the x-axis (positive area)
cancels out with the area below the x-axis, so the area under the curve is 0.

I.15.43: While the book claims that the function F (x) is an anti-derivative for f(x), it is not! An
antiderivative needs to have the correct derivative on the entire interval [0, 2]. But F (x) is not differen-
tiable at the point x = 1. In fact, F (x) is not even continuous here!. You get different values whether
you are approaching 1 from the left or the right.

We have:

limx→1− F (x) =
1

2
x2 − x

∣∣∣∣
x=1

= −1
2

limx→1+ F (x) = x− 1

2
x2
∣∣∣∣
x=1

= 1
2

Since F (x) is not continuous at 1, it is not differentiable for 1, and so is not an antiderivative for f(x)
on the interval [0, 2].

I.15.44: The issue here comes from the substitution. Remember that x has domain [−1, 1], and
u = 1− x2. Therefore, the book claims that x =

√
1− u. However,

√
1− u ≥ 0 for all u, but x needs

to be negative at times. This substitution does not work because it does not pass the horizontal line
test on the interal [−1, 1]. When you graph u = 1 − x2 on this interval, you will see that it fails this
test.


