- **E1.** Show that there exists an $\mathcal{N} \models PA$ and an $a \in \mathcal{N} \setminus \mathbb{N}$ so that a is definable in \mathcal{N} .
- **E2.** Let (A, <) be a dense total order without endpoints, and assume that A is homogeneous in the sense that (a, b) is isomorphic to A whenever $a, b \in A$ with a < b (examples: \mathbb{R} , \mathbb{Q}). Let $\alpha(A)$ be the least ordinal which is not isomorphic to any subset of A. Prove that $\alpha(A)$ is a regular uncountable cardinal. Then give examples of such A, B with $|A| = |B| = \aleph_1$ and $\alpha(A) = \omega_1$ and $\alpha(B) = \omega_2$.
- **E3.** Let T be a theory in the language consisting of a single binary relation symbol such that T has an infinite model which is an equivalence relation. Prove that T has two isomorphic countable models \mathfrak{A}_0 and \mathfrak{A}_1 such that \mathfrak{A}_0 is a *proper* elementary submodel of \mathfrak{A}_1 .
- **E4.** Let δ be any ordinal and let $\gamma = \omega^{\delta}$ (under ordinal exponentiation). Let $\mathcal{U} = \{S \subseteq \gamma : S \text{ has order type } \omega \text{ and is unbounded in } \gamma\}$. Prove that $|\mathcal{U}|$ is 0 or $|\gamma|^{\aleph_0}$.
- **E5.** Let M model PA.
 - 1. Show that there is no formula $\varphi(x,y)$ so that every subset $D\subseteq M$ definable (with parameters) is defined in M by $\varphi(x,b)$ for some b.
 - 2. Show that for every $c \in M$, there is a formula $\varphi(x,y)$ so that every subset $D \subseteq [0,c)$ definable (with parameters) is defined in M by $\varphi(x,b)$ for some b.
- **E6.** Prove or disprove: There exists a partial computable function f such that the domain of f and range of f are not computable but the graph of f is computable.
- **E7.** Let $\kappa < \gamma$ be regular cardinals. Partially order $\kappa \times \gamma$ by saying $(\alpha_1, \beta_1) \le (\alpha_2, \beta_2)$ iff $\alpha_1 \le \alpha_2$ and $\beta_1 \le \beta_2$. Then x < y means $x \le y$ and $x \ne y$. Prove that there is no ordinal α and function $f : \alpha \to \kappa \times \gamma$ such that f is both cofinal and increasing:

$$\forall x \in \kappa \times \gamma \; \exists \xi < \alpha \; [x < f(\xi)] \quad \text{and} \quad \forall \xi, \eta < \alpha \; [\xi < \eta \to f(\xi) < f(\eta)].$$

E8. If α , β are non-zero ordinals, then there is a largest ordinal which divides both of them. Here, δ divides α iff $\alpha = \delta \xi$ for some ξ .