For the last session, you solved this question from Summer 2012:

E0. Show that there exists an $\mathcal{N} \models PA$ and an $a \in \mathcal{N} \setminus \mathbb{N}$ so that a is definable in \mathcal{N} .

In a later qual, we asked a more sophisticated version:

E1. Let M be a model of PA that is not elementarily equivalent to $(\mathbb{N}, +, \cdot)$. Show that there is an infinite element of M that is definable.

What about nonstandard models of PA that *are* elementarily equivalent to $(\mathbb{N}, +, \cdot)$? In other words, what about nonstandard models of true arithmetic? This was never a qual problem, but for completeness:

E2. Let M be a model of True Arithmetic, i.e., the theory of $(\mathbb{N}, +, \cdot)$. Show that no infinite element of M is definable.

Incompleteness is intimately linked to computable inseparability.

E3. Consider the sets

$$A = \{ \lceil \varphi \rceil \colon \mathrm{PA} \vdash \varphi \},$$

$$B = \{ \lceil \varphi \rceil \colon \mathrm{PA} \vdash \neg \varphi \},$$

where $\lceil \varphi \rceil$ is the Gödel code of the sentence φ . Show that A and B are computably inseparable. I.e., show that there is no computable set C such that $A \subseteq C$ and $B \cap C = \emptyset$.

The next question extends the fact that no computably enumerable, consistent extension of PA is complete.

E4. Let T_0 and T_1 be computably enumerable, consistent extensions of PA (although, $T_0 \cup T_1$ need not be consistent). Show that there is a sentence ψ that is independent of both T_0 and T_1 .

That's enough about PA and its extensions. The next few problems are basic model theory.

E5. Call a model M "nice" iff for every $a,b \in M$, there is an automorphism of M that moves a to b. Let T be a theory in a countable language. Show that if T has a nice model of some infinite cardinality, then T has nice models of all infinite cardinalities.

- **E6.** Let L be a language which includes a unary relation symbol R. Let φ be an L-sentence and Γ a set of L-sentences neither of which contains the symbol R. If Γ proves φ in the language L, must there be a deduction of φ from Γ in which R does not occur (i.e., in the language $L \{R\}$)? If so, prove that there is always such a deduction; and if not, describe Γ and φ which provide a counterexample.
- E7. Let L be the language containing one binary relation symbol. A graph is a symmetric irreflexive binary relation. It is n-colorable iff there is a map from its universe into n such that no two elements in the relation are assigned the same value.
- (a) Show that there is a first order L-theory T whose models are exactly the 3-colorable graphs.
 - (b) Prove that T is not finitely axiomatizable.

We finish with a strange combinatorial problem.

E8. Prove that there is no family $\{A_{\alpha} : \alpha < \omega_1\} \subseteq \mathcal{P}(\omega)$ such that for all $\alpha < \beta : A_{\beta} \backslash A_{\alpha}$ is infinite and $|A_{\alpha} \backslash A_{\beta}| \leq 7$.