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Goals of this Talk

We already had 2-3 talks about this topic already.

• The goal of this talk is to sort of clean up details and clarify some of the proofs.

• Work out more examples regarding the affine Grassmannian (which I promised in
previous discussion).

• Talk some more about line bundles on BunG. In particular, the determinant line
bundle and the Pfaffian line bundle.

• Describe in more detail the Picard group of BunG.

• Compute examples for various cases e.g. G = SLr and G = SOr.

• For the next talks, perhaps someone should give a genuine introduction to (a) affine
lie algebras or (b) discuss space of vacua or (c) talk about Harder-Narasimhan
stratification.
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Recollections on Affine Grassmannians

Recall that GrG(−) is an ind-proper of finite type ind-scheme when G is a connected
reductive group. It is reduced iff Hom(G,Gm) = 1.

Example

Let’s just look at GrG(C) for some examples.

• If G = Ga, then

GrG(C) = (C((t)))/(C[[t]]) =
{
· · ·+ a−2t

−2 + a−1t
−1 + a0 | ai ∈ C

}
= A∞.

Notice that this is not ind-projective. Here, G is not reductive. It is ind-reduced
since Hom(G,Gm) = 1.

• If G = GL1, then

GrG(C) = C((t))×/C[[t]]× = {tn | n ∈ Z} = Z.

The equality follows by factoring out the lowest power of t that appears e.g.

1

tn
+ t+ t2 + t3 + · · · = t−n(1 + tn+1 + tn+2 + tn+3 + . . . ).

• (Exercise) Show that GrG(D) = C∞ × Z where D is the ring of dual numbers over
C and G+G1. This show that GrGL1 cannot be ind-reduced already.
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Affine Grassmannians (other interesting facts)

Example

Let G := GLn. What does GrGLn(C) look like?
It has a bunch of connected components each of which are isomorphic to GrPGLn(C).

Theorem (Basic Properties of Affine Grassmannians)

• If G = G1 ×G2, then (GrG)red = (GrG1)red × (GrG2)red.

• The inclusion SLn ↪→ GLn induces an isomorphism between GrSLn and the reduced
0-th connected component of GrGLn .

• GrPGLn(C) ∼= GrGLn(C)/Z.
• π0(GrG(C)) = π1(G(C)).

We can already see these examples in some of the cases above.
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Affine Grassmannians (other interesting facts)

Here’s a proof for your convenience.

Proof.

• Let G = G1 ×G2. At the level of C points, GrG(C) = GrG1(C)×GrG2(C). So the
statement follows for the reduced ind-schemes by the following fact.
Fact. Over C, if X is ind-finite type and ind-reduced, then its closed points are its
C-points and Hom(X,Y ) = lim←−i

lim−→i
Hom(Xi, Yj) = lim←−i

lim−→j
Hom(Xi(C), Yj(C)).

• Bijectivity at the level of C-points is a linear algebra problem. Then apply the above
fact.

• Exercise in linear algebra.

• We’ve seen this already.
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Line Bundles on GrG

Theorem

Assume G is a simply connected simple group. There is a homomorphism
Pic(GrG)→ Pic(P1

C) which is an isomorphism.

So this is a theorem of Kumar-Narasimhan-Ramananthan and Sorger only cites it. I at
least want to give examples and explanations since we’ve talked about it in the past. A
proof sketch was written down in Jeremy’s talk as well.
First, let me describe this homomorphism more directly without too much of language of
affine Lie algebras.
Pick the map SL2 → LSL2 which sends SL2(R)→ SL2(R((z)))(

a b
c d

)
→
(
d cz−1

bz a

)
.

Then pick LSL2 → LG̃. Then the borel subgroup of SL2(R) goes to L
+G̃ by

construction (this explains the swap between d, a and c, z).

Quotient by Borel and L+G̃ to get a map φ̄ : P1
C → GrG̃.

Then the map in theorem is the pullback map!
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Examples of the Theorem in Other Contexts

Let me state the Cartan Decomposition of the Affine Grassmannian.

Theorem

There is a bijection between

X∗(G,T )+ ↔ {G(C[[t]])− orbits of GrG(C)}

sending λ to G(C[[t]])tλ. The G(C[[t]])tλ called Schubert cells.

My intuition is then this. First, it is known that if G is a simple and simply connected
group, then Pic(G) = 0. Then using the Cartan decomposoition, there is a
decomposition of GrG into G(C[[t]]). One can reason that for most groups e.g.
G = SL2, the Picard group of the Schubert cells are trivial. So one can ask about the
Picard group of the whole by considering how to patch. So, it seems somewhat
reasonable to expect Z as the Picard.
(I’m not sure if this can be made more precise...I haven’t written out details).
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Linearized Line Bundles on Affine Grassmannians

Fix your favoriate algebraic curve X. Recall from the uniformization theorem that
GrG → BunG(X) is an étale locally trivial LXG-bundle where LXG is given by
U 7→ G(O(XU )

×). The statement for the uniformization theorem works for semisimple
groups1 at least.

Theorem

From the uniformization theorem, Pic(BunG(X)) is isomorphic to PicLXG(GrG) the
group of LXG-linearized line bundles on GrG. The map is induced by π∗ where
π : GrG → BunG(X).

1(?do recent papers deal with the case of general reductive groups?
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More General Groups

Example (What about G = GLn?)

A lot of the material in Sorger’s notes assume G is simply connected ± (almost) simple.
If G = Gm, then issues already arise.
If G := Gm, then BunG(X) = Pic0(X)× Z×BGm. Line bundles on Pic0(X) can be
quite complicated e.g. if X is an elliptic curve then Pic0(X) ∼= X.

Example

What if G = GLn for n > 1? This is the case of vector bundles on a curve.
Again, one would expect that the answer for Pic to have a dicrete piece and a nodiscrete
piece. A natural stepping stone would then be to compute the Picard group of the
moduli space of rank r semistable vector bundles of fixed determinant L: ML

r (X). For
elliptic curves X, M0

r (X) ∼= X and so this is not too bad.

Theorem (Drézet-Narasimhan, Hoffmann)

Pic(ML
r (X)) = Z. Hoffmann generalized this to algebraically closed fields of any

characteristic.
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More General Groups II

Theorem

Assume g(X) > 0. Let G be a simple complex group.

1 There is a canonical isomorphism Tor(Pic(Bun0
G(X)))

∼→ ̂H1(X,π1(G)) where the

hat denotes Pontrjagin duality: Â = Hom(A,Gm).

2 The quotient Pic(Bun0
G(X))/Tor is an infinite cyclic group whose positive

generator L is
f∗
πL ∼= OBun

G̃
(X)(ℓb)

where π : G̃→ G is the universal cover and fπ : BunG̃(X)→ BunG(X) is given by
extension of structure groups. The number ℓb is called the basic index whose values
I omit (it depends on G e.g. type E6 has ℓb = 3).

It is not clear to me why g(X) = 0 is excluded in this story in the lecture notes. The
original paper makes no assumption of g(X) > 0 either.
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More General Groups III

Proof of Theorem.

(1) will be proved. (2) is omitted. (2) is proven by looking at the
mapPic(Bun0

G(X))→ Pic(GrG̃).

From previous discussion, the forgetful map f : PicLX G̃(GrG̃)→ Pic(GrG̃)
∼= Z has

kernel given by the character group of LXG. Look at the exact sequence

1→ LXG̃/π1(G)→ LXG→ H1(X∗, π1(G))→ 1

The characters of LXG̃ are trivial and so characters of LXG are given by characters of
H1(X∗, π1(G)). But the restriction map H1(X,π1(G))→ H1(X∗, π1(G)) is bijective so
we win.
Technical gap: Why does the former not have larger free part that just maps to zero?
Explanation: As written this uses part (2). Why the proof passes through f uses the
next slide.
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More General Groups IV

Pic(Bun0
G(X)) Pic(BunG̃(X))

PicLXG(Gr0G) PicLX G̃(GrG̃)

Pic(GrG) Pic(GrG)

Pic(P1
C)

f∗
π

∼= ∼=

kernel is Hom(LXG,Gm)

∼= ∼=
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Examples with SLr I

I want to just work out the example of G = SLr with X a projective smooth complex
curve. Since SLr is simply connected, I know that Pic(BunG(X)) = Z and its generator
arises from the generator of Pic(GrG).

Theorem

The determinant bundle D on BunSLr (X) is OBunG(X)(1).
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Examples with SLr II

Here’s what the determinant bundle is.
First off, to give a line bundle L on an algebraic stack X , one must prescribe to each
(smooth) morphism S → X (from a scheme), a line bundle LS such that for all

composites S′ f→ S → X , one gives an isomorphism f−1LS
∼→ LS′ .

Every map S → BunG(X), by the Yoneda Lemma is givenby some family ES of vector
bundles over X parameterized by S. We would like to extract a line bundle from ES . We
could potentially just take determinants e.g. to each S → BunG(X) we just associate
det ES which is a line bundle on XS := X × S, but this cannot be right! We want a line
bundle on S. Not on XS . So clearly this process isn’t the right way to do so!
Here’s the correct process.
First, resolve ES by S-flat coherent sheaves 0→ P1 → P0 → F → 0. By Serre’s
Theorem A it is possible to make p∗P0. So pushforward along p : XS → S to get an
exact sequence 0→ R1p∗P1 → R1p∗P0 → 0. This gives a length one perfect complex
representing Rp∗ES in Db

c(S).
We then set DES := det(Rp∗ES)−1 where the determinant of a two-term complex
0→ K0 → K1 → 0 of locally free sheaves is ∧topK0 ⊗ (∧topK1)−1. ’

Theorem

DES does not depend up to canonical isomorphism on the choice of perfect complex
representing Rp∗ES . Furthermore, DES ∈ Pic(S).

14 / 24



Examples with SLr III

Definition

The determinant line bundle D on BunG(X) associates to each smooth morphism
ES : S → BunG(X) the line bundle DES ∈ Pic(S).
The fibres of DES over s are given by (∧H0(X,Fs))

−1 ⊗ ∧H1(X,Fs).

It is perhaps worth noting thatone can always twist the families ES by bundles coming
from from X. Doing so gives twists of the determinant line bundle. It is a theorem of Le
Potier that this depends only on the K-class of the bundles you twist by.
As part of training, let’s work out what happens when G = SLr.

Lemma

Let F be a vector bundle on XS such that ∧F is the pullback of some line bundle along
XS → X. Then

DF⊗q∗u = Drank(u)
F

where u is a vector bundle on X.

Proof.

Via some reductions one can assume u is given by OX(−p). Consider the modification
sequence 0→ OX(−p)→ OX → Op → 0. Note that DF⊗q∗Op is the trivial line bundle

by our assumptionon F . So, DF⊗q∗u ∼= D⊗rank(u)
F since rank(u) = 1.
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Examples with SLr IV

Let’s use what we know about determinant line bundles to determine that
Pic(BunG(X)) ∼= ZD with D the ample generator. Again, G = SLr is simply connected
so our previous results apply.
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Examples with SLr IV

There’s a diagram

P1
C GrSLr

BunSLr (X)

φ

π

The composite π ◦ φ : P1
C → BunSLr (X) gives a family E := EP1C of SLr-bundles on X

parameterized by P1
C.

Let’s just pick r = 2 for ease (one can justify that this is sufficient to prove the
statement).
For each point [a : c] ∈ P1

C, we get some SL2-bundle on X which we denote by E[a:c].
Using the map to GrSL2 , we get an SL2-bundle on the formal disk given by the lattice

W =

(
d cz−1

bz a

)
(C[[z]]⊕ C[[z]]) ↪→ C((z))⊕ C((z)).

Consider the lattice V = z−1C[[z]]⊕ C[[z]] which corresponds to the bundle
F = OX(p)⊕OX . There’s the inclusion W ⊆ V which corresponds to the modification
E[a:c] = ker(F → Op) (use the fact that the lattice W has determinant 1). The map
F → Op sends (z−1f, g)→ af(p)− cg(p). Then that means the determinant of E[a:c] is
going to give me DE = OP1C

(1) (remember the dual).
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Pfaffian Line Bundle

We must explicitly work in characteristic ̸= 2. Otherwise the material here is not quite
right.
A vector bundle E over XS has a nondegenerate quadratic form valued in ωX if there
is an isomorphism σ : E → E∨ s.t. σ = σ∨ where E∨ = HomOXS

(E, q∗ωX) where
q : XS → X is the projection.

Lemma (Lemmas on Representative for Cohomology and Skew Complexes)

0→ K0 α→ K1 → 0 is skew if α is skew-symmetric.

Definition

Let F be a vector bundle on XS equipped with a nondegenerate quadratic form σ valued
in ωX .
Glue the determinant of skew complexes together. This defines a canonical square
root of DF called the Pfaffian bundle which is denoted by P(F,σ).

18 / 24



Pfaffian Line Bundle on SOr

Let ≥ 3 and F be the universal bundle on BunSOr (X)×X. Take a line bundle κ s.t.
κ⊗ κ ∼= ωX , then Fκ = F ⊗ q∗κ has a nondegenerate quadratic form with values in ω
(even if κ is trivial). Then the previous theorem implies there is a Pfaffian line bundle
associated to Fκ denoted Pκ for short.
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When is the Pfaffian Line Bundle a Generator?

Fix G̃ a simply connected simple group. We know Pic(BunG̃(X)) ∼= Z is infinite cyclic.
We ask what the generator is in the cases of type B,D,G2. The main fact is the
following:

Theorem

For types B,D,G2 (and hence the case where G = SOr and r ≥ 3), we have
Pic(BunG̃(X)) ∼= ZP.

We first introduce the Dynkin index. Take G̃ and consider a representation
ρ : G̃→ SLr. Then we get the extension of scalars map fρ : BunG̃(X)→ BunSLr (X).
Then the pullback map is f∗

ρ : Pic(BunSLr (X))→ Pic(BunG̃(X)) and both groups are
canonically isomorphic to Z. The map is injective. Ehh?? Is this clear? Claim: the
index of this map is the Dynkin index dρ. We realize dρ by looking at the level of the
affine Grassmannian f∗

ρOGrSLr
(1) =: OGr

G̃
(dρ).

Since G̃ is a simply connected simple group, we can “integrate” and study representations
of the Lie algebra g. Set dg as the GCD over all dρ arising from representations of g. Let
Dρ denote the pullback of the determinant bundle along BunG̃(X)→ BunSLr (X).
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When is the Pfaffian Line Bundle a Generator?

Then, the above follows from

Theorem

[Pic(BunG̃(X) : Picdet(BunG̃(X)] = dg where Picdet(BunG̃(X) is the subgroup
generated by all of the Dρ ranging over all representations.

Recall that OGr
G̃
(1) had an associated Mumford group which was a central extension

1→ Gm → L̃G̃→ LG̃→ 1.

We also have a similar exact sequence for SLr. Differentiating, we get a diagram

0 C L̃g Lg 0

0 C L̃slr Lslr 0

= Lρ

To determine what canonical central extension we get for L̃g, one computes the cocycle.
This comes in the form of a lemma.
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Affine Lie Algebras and Loop Groups

In previous talks, we had discussed OGr
G̃
(1) and its construction. The precise

relationship is spelled out for convenience.

Theorem

On GrG̃, there is a line bundle OGr
G̃
(1) which is built from the character

χ : L̂+G̃→ Gm × L+G̃
p1→ Gm.

Here, we had a canonical central extension 0→ Gm → L̂G̃→ LG̃→ 1 (arising from
representation theory). The first map above arose from the splitting of this central

extension upon restriction to L+G̃.
Note

GrG̃ = L̂G̃/L̂+G̃ = LG/L+G.

Furthermore, Pic(GrG̃)
∼= Z.

It is worth noting that Kumar et. al. prove the theorem through an application of GAGA
in “Infinite Grassmannians and moduli spaces of G-bundles”.
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When is the Pfaffian Line Bundle a Generator?

Lemma

The cocycle for V is given by (
1

2

∑
λ

nλλ(Hθ)
2

)
ψg

The quantity in front from ψg is dg.

If we return to the theorem regarding types B,D,G2, one then only needs to observe (a)
the Pfaffian makes sense in these cases and (b) the Dynkin index in all these cases equals
2.
Note: I haven’t gone of out of my way to compute the Dynkin indices myself. Sorger
gives this in a table. Exercise.
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Examples with SOr where r ≥ 3

Let G := SOr. There is an exact sequence

0→ ̂H1(X,π1(G)) = (Z/2Z)2g = J2 → Pic(Bun0
G(X))→ Z→ 0.

The torsionfree part Z is generated by the Pfaffian Pκ = P ⊗ q∗κ for any theta
characteristic κ (i.e. κ⊗2 ∼= ωX and here we use the Pfaffian w.r.t. the universal bundle).
Now let θ(X) ⊆ Pic(X) denote the subgroup generated by theta characteristics. Then
the Pfaffian P : θ(X)→ Pic(Bun0

G(X)) is an isomorphism. Here, J2 is the kernel of
[2] : Jac(X)→ Jac(X).
Question: Why is the torsionfree part generated by the Pfaffian? See previous slide.
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