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Introduction



Toposes and local operators

A topos E is a category that

• is finitely complete (has finite products and equalizers),

• is cartesian closed (for any objects X ,Y ∈ E we can form the

exponential object Y X with an evaluation morphism X × Y X → Y )

• contains an object Ω such that for any X ∈ E , morphisms X → Ω

correspond naturally to subobjects of X .

From these we can form “power objects” in the form of ΩX , and

evaluation X × ΩX → Ω acts like a membership predicate.

One can also define truth functional operations ¬,∧,∨,⇒ as maps

Ωi → Ω (with i the arity of the connective), and quantifiers ∀X ,∃X as

maps ΩX → Ω.
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Toposes and local operators

A local operator (or Lawvere-Tierney topology) on a topos E is a

morphism j : Ω→ Ω such that

• jj = j

• j ◦ ∧ = ∧ ◦ (j × j)

• j> = >

Local operators strengthen the higher order theory modeled by E , and

induce subtoposes of “j-sheaves”. Some examples of local operators:

• 1Ω (induces the total subtopos)

• >Ω (the “inconsistency operator”, induces the trivial subtopos.)

• ¬¬ : Ω→ Ω (induces a subtopos with a Boolean internal logic)

• For a morphism p : 1→ Ω, p ⇒ − and p ∨ − are local operators.
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Toposes and local operators

The important idea: toposes model a higher order intuitionistic

logic/typed set theory. Local operators fine tune this theory. For

example,

• The category of sets in your average Boolean-valued model of set

theory is essentially the ¬¬-sheaves on SetH , for some complete

Heyting algebra H.

• Classifying toposes are built around the syntax of a first order theory,

and local operators correspond to the extensions of said theory.

• Presheaf toposes carry loose information about a topological space

(X , τ), but the local operators give categories of sheaves (imposing

coherence conditions).
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Realizability

Realizability semantics are a semantics for non-classical logic that

interprets sentences computationally. The original definition of

realizability for first order arithmetic is due to [Kleene, 1952], and has

since been vastly generalized.

The rough idea: to each predicate φ associate a function φ : N→ P(N),

interpreting

• φ(n) ∧ ψ(n) as {〈m, k〉 |m ∈ φ(n) ∧ k ∈ ψ(n)},
• φ(n)⇒ ψ(n) as {e | (∀m ∈ φ(n))(ϕe(m) ∈ ψ(n))},
• etc.

To talk about the common generalizations, we need to generalize our

notion of computation.
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Schönfinkel algebras

A Schönfinkel algebra (or partial combinatory algebra) is a set A

equipped with

• a partial binary operation A× A→ A (usually called “application”.

• an element k ∈ A such that for all a ∈ A we have ka ↓ and kab = a

for any b ∈ A,

• and an element s ∈ A with sab ↓ and sabc ' (ac)bc for all

a, b, c ∈ A
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Schönfinkel algebras

Named for Moses Schönfinkel, who proposed a similar formalism in

[Schönfinkel, 1924] that was equivalent to the lambda calculus. The

present notion is due to [Feferman, 1975].

A Schönfinkel algebra gives a notion of computation; in any non-trivial

such algebra, we can encode the natural numbers and partial recursive

functions—and, potentially, more.
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Schönfinkel algebras

Key examples:

• The first Kleene algebra K1. The underlying set is N, and

application is defined by n ·m = ϕn(m).

• The second Kleene algebra K2. The underlying set is NN; the

application operation f · g is n 7→ k − 1 where k is the first non-zero

value of f (n_g � i) if this is defined for all n, and undefined

otherwise.

• The Scott algebra S. The underlying set is P(N), and for A,B ∈ S,

AB = {x | 〈x , n〉 ∈ A ∧ Dn ⊆ B}
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Schönfinkel algebras

Given a Schönfinkel algebra A, one can build a topos structured by A,

called a realizability topos. The construction is due to

[Hyland et al., 1980].

An object in a realizability topos is a pair (X ,≈) where X is a set, and ≈
is a function X × X → P(A) such that

• there is some a ∈ A such that for all x , y ∈ X and b ∈ x ≈ y ,

a · b ↓ ∈ y ≈ x ,

• there is some a ∈ A such that for any x , y , z ∈ X , b0 ∈ x ≈ y , and

b1 ∈ y ≈ z , a · 〈b0, b1〉 ↓ ∈ x ≈ z .

Sometimes we are interested in restricting the a’s above to an elementary

subalgebra A# ⊂ A. In which case the pair (A,A#) is a relative

Schönfinkel algebra, and the resulting topos is a relative realizability

topos.
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Schönfinkel algebras

A couple of realizability toposes:

• K1 gives the effective topos (Eff).

• S gives the Scott realizability topos (RT(S)).

A couple of relative realizability toposes:

• K2 with its subalgebra of computable elements gives the

Kleene-Vesley topos.

• S with its subalgebra of c.e. elements gives the relative Scott

realizability topos.
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Schönfinkel algebras

It’s tempting to view local operators on a realizability topos as somehow

strengthening the underlying notion of computation, and the lattice of

local operators as a degree structure.

• There’s a good notion of adjoining an oracle to a Schönfinkel

algebra, and each oracle added to K1 gives a local operator on Eff.

• In fact, the Turing degrees embed (as a poset) into the local

operators on Eff.

• But not every local operator arises this way. Some extended notions

of oracle computation (e.g. multifunction oracles) give more local

operators.

Is there a notion of oracle computation whose degrees structure is

isomorphic to the lattice of local operators on Eff?
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Yes. Bilayer Turing degrees.



Bilayer functions

Recently, [Kihara, 2021] has been able to formalize this notion of local

operators as a degree structure in more traditionally computability

theoretic language, as so-called bilayer Turing reducibility.

(Everything in this section is entirely due to Kihara.)
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Bilayer functions

A bilayer function f is a partial multifunction f :⊆ N× Λ ⇒ N, where Λ

is some set. We write 〈n, c〉 in the domain as (n|c), calling n the public

input and c the private input.
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Bilayer functions

Why are these the right sorts of things to look at?

• A local operator in Eff is a function j : P(N)→ P(N) (with some

properties to be mentioned later)

• Every such function corresponds to a unique Rj ⊆ N× P(N).

• We can then define the bilayer function j̃ with domain Rj , and with

j(n|X ) = X .

• Moreover, every bilayer function “essentially” looks like this.

So, up to adding “extra copies” of elements in the domain, bilayer

functions just repackage maps P(N)→ P(N); the trick is finding the

right notion of reduction.
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Bilayer Turing reduction

We can describe bilayer Turing reducibility game theoretically. Given

bilayer functions f , g , let us consider the three player imperfect

information game G(f , g) between Merlin, Arthur, and Nimue:

• At round 0, Merlin plays (x0|c) in the domain of f .

• At round n Arthur plays either 〈0, un〉 with un in the public domain

of g , or plays 〈1, un〉, declaring the end of the game with un.

• At round n Nimue plays yn such that g(un|yn) 6= ∅.

• At round n + 1, Merlin plays some xn+1 ∈ g(un|yn).

Arthur and Nimue win if Arthur plays 〈1, un〉 with un ∈ f (x0|c).
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Bilayer Turing reduction

We say that f is bilayer Turing reducible to g , denoted f ≤LT g when

Arthur and Nimue have respective strategies τ and η such that

• τ is computable and can only see the xi (though Merlin and

Nimue’s strategies may see all previous moves);

• τ, η are jointly winning; when Arthur and Nimue play G(f , g) using

these strategies, they win regardless of Merlin’s strategies.

If Arthur & Nimue have a winning strategy using exactly one oracle

query, we write f ≤1
LT g .

Note that if f , g are single-valued, total, and don’t depend on the private

inputs, this will reduce to ordinary Turing reducibility between functions.

Turns out, the poset of bilayer Turing degrees is equivalent to the lattice

of local operators in Eff.
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Examples of Bilayer functions

• Any function f : N→ N can be construed as a bilayer function

f̄ :⊆ N× {∗}⇒ N where f̄ (n|∗) = {f (n)}.
• Cofinite, where dom(Cof) = {∗} ×N and Cof(∗|k) = {n | n > k}.
• Cα

cof with domain those (e|∗) such that {n | ϕαe (n) ↓} is finite, and

with Cα
cof(e|∗) = {n | ϕαe (n) ↑}

• LLPOm/k , with domain {e | |{n | n ≤ k ∧ ϕe(n) ↓}| ≤ m} and

LLPOm/k(e) = {n | ϕe(n) ↑}.

Cofinite is a good example of the ridiculous strength of some bilayer

functions. Everything below it on this list reduces to it. More than that,

for a function f : N→ N, f ≤LT Cofinite iff f is hyperarithmetic

[van Oosten, 2014].
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Local operators from bilayer functions

For X ,Y ∈ P(N), let X ⇒ Y be the set of all e such that for all n ∈ X ,

e · n ↓∈ Y .

In Eff, a local operator is represented by a map j : P(N)→ P(N) such

that

• there is an e ∈ N such that for any X ∈ P(N), e ∈ X ⇒ j(X ),

• There’s an e ∈ N such that for any X ∈ P(N), e ∈ j(j(X ))⇒ j(X )

• There are e, e′ such that for all X ,Y ∈ P(N),

e ∈ j(X × Y )⇒ j(X )× j(Y ), and e′ ∈ j(X )× j(Y )⇒ j(X × Y ).
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Local operators from bilayer functions

Given a bilayer function f , define f a to be the bilayer function whose

instances are pairs (τ |η) where τ codes an Arthur strategy, η is a Nimue

strategy, and any play with these strategies, where Merlin makes no first

move, ends with Arthur declaring termination of the game.

Define f a(τ |η) to be the set of all values with which Arthur can declare

termination. We can think of f a as the “universal machine” with oracle

f .

Fact (Kihara, 2.15)

g ≤LT f iff g ≤1
LT f a.
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Local operators from bilayer functions

Given a bilayer function f , define f → : P(N)→ P(N) such that

〈n, e〉 ∈ f →(X ) if and only if there is some c such that e ∈ f (n|c)⇒ X .

Think of f →(X ) as giving you the set of one-query Arthur strategies for

getting an element of X using oracle f .
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Local operators from bilayer functions

Finally, given a bilayer function f , f a→ : P(N)→ P(N) represents a local

operator in Eff. The sketch of a proof is something like this:

• If we can computably produce an element of X , then we can turn

that program into an f a→-program that doesn’t use the oracle (so

an element of X ⇒ f a→(X ));

• To get an element of f a→(X )× f a→(Y )⇒ f a→(X × Y ), we can

parallelize the computations used for each of f a→(X ) and f a→(Y ).

The other direction is easier.

• The way to obtain an element of f a→f a→(X )⇒ f a→(X ) is a bit

more technical, but the idea is that when the definitions are

unpacked, an element of f a→f a→(X ) is a strategy for producing

strategies to a second game, and we simply run these in sequence.

The remainder gets even more technical, but the operation f 7→ f a→

turns out to be an isomorphism of preorders.
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The enumeration setting



(Joint work with Mariya Soskova and Jun Le Goh)
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An observation

Nothing in the portion of Kihara’s work discussed above depends on any

special feature of K1. We could easily use any other Schönfinkel algebra

A.

Moreover, we can use any relative Schönfinkel algebra (A,A#), requiring

that Arthur’s strategy be an element of A# (and adjusting the

definitions of −a and −→)

So, in particular, we can examine this notion over the relative Scott

algebra (S,S#), where S# is the subalgebra of c.e. elements. We should

be able to make inferences about the local operators of the relative Scott

realizability topos, RT(S,S#), which are not well understood.
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RT(S,S#)

Why study RT(S,S#)?

• Like Eff does for classical computability, RT(S,S#) gives a setting

where (at least sometimes) more elegant proofs can be found for

facts about computation in (S,S#).

• The underlying notion of computation has connections to

enumeration reduction.

• It contains subcategories that have been explored as settings for

computable analysis.

• It’s just cool.

23



RT(S,S#)

Why study RT(S,S#)?

• Like Eff does for classical computability, RT(S,S#) gives a setting

where (at least sometimes) more elegant proofs can be found for

facts about computation in (S,S#).

• The underlying notion of computation has connections to

enumeration reduction.

• It contains subcategories that have been explored as settings for

computable analysis.

• It’s just cool.

23



Relative Scott bilayer functions

The notion of a bilayer function is essentially unchanged: a partial

multifunction f :⊆ S× Λ ⇒ S for some set Λ.

The reduction game G(f , g) looks the same, except now Arthur’s

strategy must be encoded by an enumeration operator Γ.

The link to local operators, f a must be adjusted so that it’s domain is

pairs (〈A, τ〉|〈〈A, c〉, η〉) where every play starting from (A|c) following

strategies τ, η ends with Arthur declaring termination.

They desperately need a better name.
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The enumeration Weihrauch degrees

Our starting point for understanding “relative Scott bilayer functions” is

to understand the simpler, one-query, Nimue-free reductions.

Provisionally, we call this enumeration Weihrauch reduction.

Concretely, for f , g :⊆ S ⇒ S, we say that f ≤eW g if there exist

enumeration operators Γ,∆ such that

1. X ∈ dom(f ) implies Γ(X ) ∈ dom(g),

2. if Y ∈ g(Γ(X )), then ∆(X ⊕ Y ) ∈ f (X ).
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The enumeration Weihrauch degrees

It’s still early, but some basic results are easily established:

• There are meets, joins, and no non-trivial countable suprema. These

follow from almost literally the same proofs as in the standard

Weihrauch setting.

• There is an embedding of the Weihrauch degrees into the eW

degrees.

• Take a problem f :⊆ NN ⇒ NN to the problem f̃ :⊆ P(N) ⇒ P(N),

with the instances/solutions of f replaced with their graphs. Replace

any functional in a Weihrauch reduction with an enumeration

operator that acts like said functional on graphs.

• Injectivity comes from using an enumeration operator Γ to form a

mapping of a finite string σ to the longest τ such that

graph(τ) ⊆ Γ|σ|(graph(σ)).
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The enumeration Weihrauch degrees

The embedding of the previous page is not surjective: there exists a

problem g :⊆ S ⇒ S such that g 6≡eW f̃ for any f :⊆ NN ⇒ NN.

Proof (M. Soskova, J. Goh).

Let g have only 1-generics in its (non-empty) domain. If g ≤eW f̃ , then

there’s an enumeration operator Γ such that Γ(G ) ∈ dom(f̃ ) for

G ∈ dom(g). But since 1-generics are quasi-minimal, and elements in the

domain of f̃ have total e-degree, dom(f̃ ) contains computable elements.

But if f̃ ≤eW g , there must be an enumeration operator e-reducing a

1-generic to a computable set, which is impossible.
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The enumeration Weihrauch degrees

There is also a map of preorders from the eW -degrees to the W -degrees,

via the representation δ :⊆ NN → S with δ(f ) = ran(f ). An enumeration

Γ induces a functional taking an enumeration of X to an enumeration of

ΓX .

It seems unlikely that this is an embedding—not every functional has this

form—but we don’t quite have a counterexample.

The bigger question: the Weihrauch degrees and the enumeration

Weihrauch degrees are certainly not isomorphic by either of the maps

above, but might they be isomorphic some other way?
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Thanks!
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Über die Bausteine der mathematischen Logik.

Math. Ann., 92(3-4):305–316.

van Oosten, J. (2014).

Realizability with a local operator of A. M. Pitts.

Theoret. Comput. Sci., 546:237–243.

30


	Introduction
	Yes. Bilayer Turing degrees.
	The enumeration setting
	Thanks!

