
ALGEBRA QUALIFYING EXAM, JANUARY 2018

1. For this problem and this problem only your answer will be graded on correctness
alone, and no justification is necessary.

(a) Give an example of a commutative ring R and a non-zero element f ∈ R
where the localization Rf = 0.

(b) Give an example of a commutative ring R and an element f ∈ R where the
localization map R→ Rf is neither injective nor surjective.

(c) Give an example of a local ring R and an element f ∈ R where Rf 6= 0, but
Rf is no longer a local ring.

2. Recall that a (left) zero divisor in a ring R is an element a such that ab = 0 for
some nonzero b ∈ R. Consider the rings

R1 = C[x]/(x3) and R2 = Mn(C) (n× n matrices over C, where n > 1).

(a) Give an example of a nonzero zero-divisor in the ring R1.
(b) Give an example of a nonzero left zero-divisor in the ring R2.
(c) Prove that the set of zero-divisors of R1 is an ideal, but the set of left zero-

divisors of R2 is not a left ideal.
(d) Let R be a commutative ring. Prove that if the set of zero-divisors in R is

an ideal I, then I ⊂ R is a prime ideal.

3. Consider the field F with 11 elements. Let G denote the cyclic group of order
11, with generator r ∈ G. Denote by FG the group algebra of G (also sometimes
denoted by F [G]). We consider r as an element of FG, and let T : FG → FG be
the F -linear map such that T (x) = rx for all x ∈ FG. Find the Jordan canonical
form of T .

4. Let G be a finite group. Denote by Aut(G) the group of automorphisms of G
and by Z(G) ⊂ G the center of G.

(a) Show that the quotient G/Z(G) is isomorphic to a subgroup of Aut(G).
(b) Show that if G/Z(G) is cyclic, then G is abelian.
(c) Suppose that Aut(G) is a cyclic group. Show that G is abelian.
(d) Show that if G is abelian, then the map φ : x 7→ x−1 is an automorphism of

G.
(e) Deduce that there exists no group G such that Aut(G) is a nontrivial cyclic

group of odd order (and, in particular, that Aut(G) is finite).

5. Let K be the splitting field of the polynomial x4 − x2 − 1 over Q. Compute the
Galois group of the extension K/Q. (For partial credit, find the degree [K : Q].)



Solutions

1. (a) f is any nilpotent in R, for instance, R = k[x]/(x2) and f = x.
(b) For instance, R = k[x]× k[x] and f = (0, x).
(c) For instance, R = k[[x, y]]/(xy) and f = x+ y.

2. (a) For instance, take x.
(b) Any non-invertible matrix.
(c) Suppose f = a0 + a1x + a2x

2 ∈ R1. If a0 is nonzero, it is easy to construct
an inverse to f , which means that f is not a zero-divisor. Thus any zero-divisor lies
in (x), and conversely it is easy to see that every element f ∈ (x) satisfies fx2 = 0,
and therefore is a zero-divisor. Thus the set of zero-divisors is the ideal (x).

By contrast, any singular matrix in R2 is a zero-divisor. In particular, let M be the
diagonal matrix diag(0, 1, . . . , 1) and M ′ the diagonal matrix diag(1, 0, . . . , 0). Then
M and M are zero-divisors, but M +M ′ is the identity, which is not a zero-divisor;
so the set of zero-divisors is not an ideal.

(d) Suppose a, b ∈ R are such that ab ∈ I. Then there exists some c such that
(ab)c = 0. Then either bc = 0, in which case b is a zero-divisor, or bc 6= 0, in which
case a(bc) = 0 implies that a is a zero-divisor, as claimed.

3. Write p = 11. The minimal polynomial of T has degree p, since for any nonzero
polynomial f in F [x] with degree less than p, the F -linear map f(T ) is nonzero:

f(T )(1) = f(r) 6= 0 ∈ FG.

By construction T p = I, so xp−1 is both the minimal and characteristic polynomial
of T . The field F has characteristic p so

xp − 1 = (x− 1)p.

So T has one eigenvalue 1 with algebraic multiplicity p and geometric multiplicity
1. By these comments the Jordan canonical form of T is a single p × p block with
eigenvalue 1.

4. (a) For any g ∈ G, the conjugation by g is an automorphism of G; this defines
a homomorphism G → Aut(G). By definition, Z(G) is the kernel, therefore by the
isomorphism theorem G/Z(G) is identified with the image, which is a subgroup of
Aut(G) (consisting of inner automorphisms).

(b) SayG/Z(G) = 〈g〉. Then any element ofG can be written as ugn for u ∈ Z(G);
we now easily see that

(ugm)(vgn) = uvg(m+n) = (vgn)(ugm) (u, v ∈ Z(G)).

(c) By (a), G/Z(G) is isomorphic to a subgroup of Aut(G). If Aut(G) is cyclic,
so is G/Z(G); now (c) follows from (b).

(d) This is an easy direct calculation.
(e) By (c), G is abelian. Since φ2 = 1 and φ ∈ Aut(G), φ = 1, so G is elementary

2-abelian. If |G| = 2, then Aut(G) = e, otherwise Aut(G) is non-abelian.

5. Put α = 1+
√
5

2 and β = 1−
√
5

2 , so that α and β are the roots of the polynomial

x2−x− 1. The roots of x4−x2− 1 are then ±
√
α, ±

√
β. The Galois group acts on

the four roots by transposition. The action has the following properties: it includes
a transposition (namely, complex conjugation), it preserves the partition {±

√
α},

{±
√
β} (because every automorphism sends α to itself or to β) and it includes an



element that sends ±
√
α to ±

√
β (because α and β are conjugates). This implies

that the Galois group is the eight-element dihedral group.


