ALGEBRA QUALIFYING EXAM, JANUARY 2018

- 1. For this problem and this problem only your answer will be graded on correctness alone, and no justification is necessary.
 - (a) Give an example of a commutative ring R and a non-zero element $f \in R$ where the localization $R_f = 0$.
 - (b) Give an example of a commutative ring R and an element $f \in R$ where the localization map $R \to R_f$ is neither injective nor surjective.
 - (c) Give an example of a local ring R and an element $f \in R$ where $R_f \neq 0$, but R_f is no longer a local ring.
- **2.** Recall that a (left) zero divisor in a ring R is an element a such that ab = 0 for some nonzero $b \in R$. Consider the rings
 - $R_1 = \mathbb{C}[x]/(x^3)$ and $R_2 = M_n(\mathbb{C})$ $(n \times n \text{ matrices over } \mathbb{C}, \text{ where } n > 1).$
 - (a) Give an example of a nonzero zero-divisor in the ring R_1 .
 - (b) Give an example of a nonzero left zero-divisor in the ring R_2 .
 - (c) Prove that the set of zero-divisors of R_1 is an ideal, but the set of left zero-divisors of R_2 is not a left ideal.
 - (d) Let R be a commutative ring. Prove that if the set of zero-divisors in R is an ideal I, then $I \subset R$ is a prime ideal.
- **3.** Consider the field F with 11 elements. Let G denote the cyclic group of order 11, with generator $r \in G$. Denote by FG the group algebra of G (also sometimes denoted by F[G]). We consider r as an element of FG, and let $T: FG \to FG$ be the F-linear map such that T(x) = rx for all $x \in FG$. Find the Jordan canonical form of T.
- **4.** Let G be a finite group. Denote by $\operatorname{Aut}(G)$ the group of automorphisms of G and by $Z(G) \subset G$ the center of G.
 - (a) Show that the quotient G/Z(G) is isomorphic to a subgroup of Aut(G).
 - (b) Show that if G/Z(G) is cyclic, then G is abelian.
 - (c) Suppose that Aut(G) is a cyclic group. Show that G is abelian.
 - (d) Show that if G is abelian, then the map $\phi: x \mapsto x^{-1}$ is an automorphism of G.
 - (e) Deduce that there exists no group G such that Aut(G) is a nontrivial cyclic group of odd order (and, in particular, that Aut(G) is finite).
- **5.** Let K be the splitting field of the polynomial $x^4 x^2 1$ over \mathbb{Q} . Compute the Galois group of the extension K/\mathbb{Q} . (For partial credit, find the degree $[K:\mathbb{Q}]$.)

Solutions

- 1. (a) f is any nilpotent in R, for instance, $R = k[x]/(x^2)$ and f = x.
 - (b) For instance, $R = k[x] \times k[x]$ and f = (0, x).
 - (c) For instance, R = k[[x, y]]/(xy) and f = x + y.
- **2.** (a) For instance, take x.
 - (b) Any non-invertible matrix.
- (c) Suppose $f = a_0 + a_1x + a_2x^2 \in R_1$. If a_0 is nonzero, it is easy to construct an inverse to f, which means that f is not a zero-divisor. Thus any zero-divisor lies in (x), and conversely it is easy to see that every element $f \in (x)$ satisfies $fx^2 = 0$, and therefore is a zero-divisor. Thus the set of zero-divisors is the ideal (x).

By contrast, any singular matrix in R_2 is a zero-divisor. In particular, let M be the diagonal matrix diag(0, 1, ..., 1) and M' the diagonal matrix diag(1, 0, ..., 0). Then M and M are zero-divisors, but M + M' is the identity, which is not a zero-divisor; so the set of zero-divisors is not an ideal.

- (d) Suppose $a, b \in R$ are such that $ab \in I$. Then there exists some c such that (ab)c = 0. Then either bc = 0, in which case b is a zero-divisor, or $bc \neq 0$, in which case a(bc) = 0 implies that a is a zero-divisor, as claimed.
- **3.** Write p = 11. The minimal polynomial of T has degree p, since for any nonzero polynomial f in F[x] with degree less than p, the F-linear map f(T) is nonzero:

$$f(T)(1) = f(r) \neq 0 \in FG.$$

By construction $T^p = I$, so $x^p - 1$ is both the minimal and characteristic polynomial of T. The field F has characteristic p so

$$x^p - 1 = (x - 1)^p$$
.

So T has one eigenvalue 1 with algebraic multiplicity p and geometric multiplicity 1. By these comments the Jordan canonical form of T is a single $p \times p$ block with eigenvalue 1.

- **4.** (a) For any $g \in G$, the conjugation by g is an automorphism of G; this defines a homomorphism $G \to \operatorname{Aut}(G)$. By definition, Z(G) is the kernel, therefore by the isomorphism theorem G/Z(G) is identified with the image, which is a subgroup of $\operatorname{Aut}(G)$ (consisting of inner automorphisms).
- (b) Say $G/Z(G) = \langle g \rangle$. Then any element of G can be written as ug^n for $u \in Z(G)$; we now easily see that

$$(ug^m)(vg^n)=uvg^{(m+n)}=(vg^n)(ug^m) \qquad (u,v\in Z(G)).$$

- (c) By (a), G/Z(G) is isomorphic to a subgroup of Aut(G). If Aut(G) is cyclic, so is G/Z(G); now (c) follows from (b).
 - (d) This is an easy direct calculation.
- (e) By (c), G is abelian. Since $\phi^2 = 1$ and $\phi \in \text{Aut}(G)$, $\phi = 1$, so G is elementary 2-abelian. If |G| = 2, then Aut(G) = e, otherwise Aut(G) is non-abelian.
- **5.** Put $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$, so that α and β are the roots of the polynomial $x^2 x 1$. The roots of $x^4 x^2 1$ are then $\pm \sqrt{\alpha}$, $\pm \sqrt{\beta}$. The Galois group acts on the four roots by transposition. The action has the following properties: it includes a transposition (namely, complex conjugation), it preserves the partition $\{\pm \sqrt{\alpha}\}$, $\{\pm \sqrt{\beta}\}$ (because every automorphism sends α to itself or to β) and it includes an

element that sends $\pm\sqrt{\alpha}$ to $\pm\sqrt{\beta}$ (because α and β are conjugates). This implies that the Galois group is the eight-element dihedral group.