ALGEBRA QUALIFYING EXAM, JANUARY 2017

- 1. For this problem (and this problem only) your answer will be graded on correctness alone, and no justification is necessary. Give an example of:
 - (a) A group G with a normal subgroup N such that G is not a semidirect product $N \rtimes G/N$.
 - (b) A finite group G that is nilpotent but not abelian.
 - (c) A group G whose commutator subgroup [G, G] is equal to G.
 - (d) A non-cyclic group G such that all Sylow subgroups of G are cyclic.
 - (e) A transitive action of S_3 on a set X of cardinality greater than 3.
- **2.** Let n > 0 be an integer. Let F be a field of characteristic 0, let V be a vector space over F of dimension n, and let $T: V \to V$ be an invertible F-linear map such that $T^{-1} = T$.

Denote by W the vector space of linear transformations from V to V that commute with T. Find a formula for $\dim(W)$ in terms of n and the trace of T.

3. Let R be a commutative ring with unity. Show that a polynomial

$$f(t) = c_n t^n + c_{n-1} t^{n-1} + \dots + c_0 \in R[t]$$

is nilpotent if and only if all of its coefficients $c_0, \ldots, c_n \in R$ are nilpotent.

- **4.** This is a question about "biquadratic extensions," in two parts.
 - (a) Let F/E be a degree-4 Galois extension, where E and F are fields of characteristic different from 2. Show that $\operatorname{Gal}(F/E) \cong (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$ if and only if there exist $x,y \in E$ such that $F = E(\sqrt{x},\sqrt{y})$ and none of x,y,xy are squares in E.
 - (b) Give an example of a field E of characteristic 2 that is not algebraically closed but that has no Galois extension F/E with Galois group $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$.
- **5.** Consider the ring $R = \mathbb{C}[x]$.
 - (a) Describe all simple *R*-modules.
 - (b) Give an example of an *R*-module that is indecomposable, but not simple. (Recall that a module is *indecomposable* if it cannot be written as a direct sum of non-trivial submodules.)
 - (c) Consider R-modules $M = R/(x^3 + x^2)$ and $N = R/(x^3)$, and take their tensor product over $R: M \otimes_R N$. It is an R-module, and in particular, a vector space over \mathbb{C} . What is its dimension over \mathbb{C} ?
 - (d) Let M be any R-module such that $\dim_{\mathbb{C}} M < \infty$, and let $N = R/(x^3)$, as before. Show that

$$\dim_{\mathbb{C}}(M \otimes_R N) = \dim_{\mathbb{C}} \operatorname{Hom}_R(N, M).$$

Solutions

- 1. (a) $G = \mathbb{Z}/4\mathbb{Z}$, $N = 2\mathbb{Z}/4\mathbb{Z}$, or $G = \mathbb{Z}$ and $N = 2\mathbb{Z}$.
 - (b) The quarternion group $G = \{1, i, j, k, -1, -i, -j, -k\}$.
 - (c) The alternating group $G = A_5$.
 - (d) The symmetric group $G = S_3$.
 - (e) The left action of S_3 on itself.
- **2.** Since $T^2=I$, the minimal polynomial of T divides $x^2-1=(x-1)(x+1)$. Therefore, the minimal polynomial of T has no repeated roots. Hence T is diagonalizable, with all eigenvalues among 1, -1. Let $V_{\pm}:=\ker(T\mp I)$ be the eigenspaces of T for the eigenvalues ± 1 . Then $V=V_{+}\oplus V_{-}$. We see that

$$n = \dim(V) = \dim(V_+) + \dim(V_-)$$

 $t = \operatorname{tr}(T) = \dim(V_+) - \dim(V_-),$

and therefore

$$\dim(V_{\pm}) = \frac{n \pm t}{2}.$$

Finally, an F-linear map $S: V \to V$ commutes with T if and only if $S(V_+) \subset V_+$ and $S(V_-) \subset V_-$; therefore, the dimension of the space of such maps is

$$\dim \operatorname{Hom}(V_+, V_+) + \dim \operatorname{Hom}(V_-, V_-) = \dim(V_+)^2 + \dim(V_-)^2 = \frac{n^2 + t^2}{2}.$$

3. Recall that the sum of nilpotent elements is nilpotent (which easily follows from the binomial formula); this implies the 'if' direction. For the 'only if', there are (at least) two approaches:

Direct: Suppose f is nilpotent. Looking at the constant term of f^N , we see that c_0 must be nilpotent. This implies that $(f - c_0)$ is nilpotent. Now looking at the lowest coefficient of $(f - c_0)^N$, we conclude that c_1 is nilpotent, and so on.

Less direct: Suppose f is nilpotent. Since the nilradical is the intersection of all the prime ideals, we need to show that $c_i \in \mathfrak{p}$ for any prime ideal $\mathfrak{p} \subset R$. This is equivalent to showing that $(f \mod \mathfrak{p}) = 0 \in (R/\mathfrak{p})[t]$. However, $(f \mod \mathfrak{p})$ is a nilpotent polynomial over a domain, which clearly implies it must be zero.

- **4.** (a) Note first that the quadratic formula implies that any quadratic extension of E is of the form $E(\sqrt{x})$ for $x \notin E^2$; in particular, any quadratic extension is Galois. Moreover, for $x, y \notin E^2$, we see that $E(\sqrt{x}) = E(\sqrt{y})$ if and only if $xy \in E^2$ (which can be seen from looking at the action of the Galois group, or from squaring the expression $\sqrt{y} = a + b\sqrt{x}$).
- Now (a) follows from the observation that $Gal(F/E) \simeq (\mathbb{Z}/2\mathbb{Z})^2$ if and only if F is the composite of two distinct quadratic extensions of E. (Of course, there are other proofs.)
- (b) The easiest example is probably the Galois field $\mathbb{Z}/2\mathbb{Z}$: the Galois group of any of its finite extension is cyclic.
- **5.** (a) The simple modules are of the form R/\mathfrak{m} for maximal ideals \mathfrak{m} ; since R is the polynomial ring, we see that the maximal modules are of the form R/(x-a) for $a \in \mathbb{C}$.
- (b) $R/(x^2)$ has dimension 2 over \mathbb{C} , therefore it cannot be simple. However, it is indecomposable: otherwise it would be a direct sum of two simple modules, which

contradicts the fact that it has non-trivial nilpotents. (For fancier examples, we could take R-modules $\mathbb{C}[x]$ or $\mathbb{C}(x)$.)

(c) Tensoring the exact sequence

$$R \xrightarrow{x^3} R \to N \to 0$$

by M, we obtain the sequence

$$M \stackrel{x^3}{\to} M \to M \otimes_R N \to 0,$$

so that $M \otimes_R N = \operatorname{coker}(x^3 : M \to M)$. In particular, for $M = R/(x^3 + x^2)$, we get $M \otimes_R N = R/(x^3 + x^2, x^3) = R/(x^2)$,

so that $\dim_{\mathbb{C}} M \otimes_R N = 2$.

(d) From the previous part,

$$\dim_{\mathbb{C}} M \otimes_{R} N = \dim \operatorname{coker}(x^{3}: M \to M) = \dim(M) - \operatorname{rk}(x^{3}: M \to M).$$

Applying $\operatorname{Hom}_R(-, M)$ to $(\ref{eq:model})$, we obtain the sequence

$$0 \to \operatorname{Hom}_R(N, M) \to M \stackrel{x^3}{\to} M,$$

so that $\operatorname{Hom}_R(N,M) = \ker(x^3:M\to M)$, and

$$\dim_{\mathbb{C}} \operatorname{Hom}_{R}(N, M) = \dim \ker(x^{3}: M \to M) = \dim(M) - \operatorname{rk}(x^{3}: M \to M)$$
 as well.

(The solution is stated in terms of right/left exactness of the functors, but it can be easily reformulated in more explicit terms.)