ALGEBRA QUALIFYING EXAM, JANUARY 2016

- **1.** Let K be a field, and let $f(x) \in K[x]$ be an irreducible polynomial. Suppose that the splitting field L of f(x) is a Galois extension of K (that is, f is separable). Let $\alpha \in L$ be one of the roots of f.
 - (a) Show that if Gal(L/K) is an abelian group, then $L = K(\alpha)$.
- (b) Is the converse statement true? That is, suppose $L = K(\alpha)$; must Gal(L/K) be abelian?
- **2.** Let A be a real skew-symmetric $n \times n$ matrix such that $\operatorname{im}(A) = \ker(A)$. In particular, $\operatorname{dim}(\operatorname{im}(A)) = n/2$, so n must be even.
- (a) Let V be an n/2-dimensional subspace of \mathbb{R}^n . Define a bilinear form (,) on V by

$$(v, w) = \langle v, Aw \rangle;$$

- here \langle , \rangle is the standard Euclidean product on \mathbb{R}^n . Show that (,) is a skew-symmetric form on V.
 - (b) Show that V can be chosen so that the above form (,) is non-degenerate.
- (c) Show that n must be divisible by 4. If you use some facts about non-degenerate skew-symmetric forms, sketch their proofs.
- **3.** Let $\phi: A \to B$ be a homomorphism of commutative rings. Recall that ϕ is said to be *integral* if every element of $b \in B$ is integral over $\phi(A)$, and that ϕ is *finite* if B is a finitely generated A-module.
- (a) Give an example of a map of commutative rings $A \to B$ that is integral but not finite.
- (b) Prove the Lying Over Theorem: Let $\phi : A \to B$ be an integral map of commutative rings. If $\mathfrak{p} \subset A$ is any prime ideal, then there exists a prime ideal $\mathfrak{q} \subset B$ such that $\phi^{-1}(\mathfrak{q}) = \mathfrak{p}$.
- **4.** Let D_k be the dihedral group of order 2k, where $k \geq 3$.
- (a) Show that the number of automorphisms of the group D_k is equal to $k \cdot \phi(k)$. Here ϕ is Euler's ϕ -function.
- (b) The automorphisms of D_k form a group; let us denote it by $\operatorname{Aut}(D_k)$. What is the structure of $\operatorname{Aut}(D_k)$? Describe the group as explicitly as you can.
- **5.** Consider the group $GL_n(\mathbb{Q})$ of invertible $n \times n$ matrices with rational coefficients. Suppose $G \subset GL_n(\mathbb{Q})$ is a finite subgroup. Prove that every prime factor p of the order |G| satisfies $p \leq n + 1$.