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1. GAGS Talk 1 – April 26, 2017

1.1. “Concrete” examples.

1.1.1. Let X = SpecR be an affine scheme and {Ui → X} a family of morphisms
of affine schemes corresponding to the ring homomorphisms {R → Ri}. Then any
R-module M , thought of as a module over X, determines modules Mi over each Ui
by extension of scalars Mi = Ri ⊗RM .

Mi,j
∼= Mj,i

''''

Mj

  

Ui ×X Uj //

��

Uj

��

Mi

''

M

!!

Ui // X

The modules Mi are “restrictions“ or pullbacks of M along Ui → X, and are
compatible in that if Mi,j is the pullback of Mi over Ui along Ui ×X Uj → Ui,
then we have isomorphisms Mi,j

∼= Mj,i that satisfy a coherence condition known
as the cocycle condition.

We say that modules over affine schemes have the property of descent for a
family {Ui → X} if any family of compatible modules Mi over Ui glues uniquely
to a module M over X that the Mi are restrictions of.

Example 1.1.2. Do modules have descent for a Zariski principal open cover {Ui →
X}, i.e. a family corresponding to prinicpal localizations {R � Rfi} so that 1 ∈
〈fi〉?

Yes: the partition-of-unity argument from a first course on algebraic geometry
shows that modules have descent with respect to Zariski principal open covers.

Example 1.1.3. Do modules have descent for a Zariski cover {U → X} corre-
sponding to not necessarily principal localizations {R� S−1i R}?

Yes, as long as the cover has a finite subcover; the proof is then word-for-word
the same as the partition of unity argument for Zariski principal open covers. Recall
that Zariski principal open covers always have finite subcovers, so this example is
a strict generalization of the one above.
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This kind of descent is useful, e.g. in studying curves with finitely many sin-
gularities. For such a singular curve, this form of descent implies that to specify
a quasi-coherent sheaf on the curve, one need only specify: 1) a quasi-coherent
sheaf on the smooth locus, 2) modules over the stalks of the singularities, and 3)
isomorphisms between their restrictions to the generic point(s).

Example 1.1.4. Do modules have descent for a Zariski cover {U → X} corre-
sponding to flat ring homomorphisms {R→ Ri}?

Yes, as long as the cover has a finite subcover.
This kind of descent is the affine scheme version of fpqc-descent; fpqc covers

of schemes are the natural extension of these finite flat covers of affine schemes to
all schemes.

1.1.5. Descent theory is a categorical formalization of the notion of descent. It
relies on the notion of fibrations which we’ll explore in accordance with the following
plan:

(1) “Concrete” examples
(2) Formalizing restrictions:

• “Pseudofunctors” on a category C Grothendieck construction←−−−−−−−−−−−−−−−→(cloven) fibra-
tions over the category C

(3) Formalizing compatibility:
• Representable “functors” HomC(−, X)←→representable fibrations C/X

for objects X ∈ C
• Sieves over an object X ∈ C, i.e. pre-composition stable classes S of

morphisms to X = subfibrations S ↪→ C/X
• Category of fibered functors and fibered natural transformations be-

tween fibrations [C/X,F ]
Yoneda lemma←−−−−−−−−→Fiber F(X) of the target cloven

fibration F over X

• Category of descent data
equiv.
' Category of fibered functors and

fibered natural transforamtions between fibrations [S,F ].
(4) Descent conditions for a sieve SU generated by a family U = {Ui → X}:

• Fibrations generalize presheaves.
• Prestacks are fibrations F such that the induced functor [SU ,F ] ←

[C/X,F ] is fully faithful; prestacks generalize uniqueness of gluing con-
dition of separated presheaves.

• Stacks are fibrations F such that the induced functor [SU ,F ] ←
[C/X,F ] is fully faithful and essentially surjective; stacks generalize
the uniqueness of gluing and existence of gluing conditions of sheaves.

This development is mostly distilled from Part I of FGA Explained.

1.2. Formalizing restrictions: pseudofunctors, the Grothendieck construc-
tion, fibrations.

Definition 1.2.1. Given a category C, a “pseudofunctor” F associates

(1) To each object X ∈ C a category F(X)

(2) To each morphism X
f−→ Y ∈ C a pullback functor F(X)

f∗←− F(Y ).
(3) For each object X, a natural isomorphism id∗X

∼= idF(X)

(4) To each pair of composable morphisms X
f−→ Y

g−→ Z a natural isomorphism
(g ◦ f)∗ ∼= f∗g∗
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satisfying the coherence axioms asserting that the following pairs of natural
isomorphisms between (composites of) pullback functors coincide:

• f∗id∗X ∼= f∗idF(X) = f∗ and f∗id∗X
∼= (idX ◦ f)∗ = f∗

• id∗Xg
∗ ∼= idF(X)g

∗ = g∗ and id∗Xg
∗ ∼= (g ◦ idX)∗ = g∗

• f∗g∗h∗ ∼= f∗(h ◦ g)∗ ∼= (h ◦ g ◦ f)∗ and f∗g∗h∗ ∼= (g ◦ f)∗h∗ ∼= (h ◦ g ◦ f)∗

Example 1.2.2. For C the category of affine scheme, we have a “pseudofunctor”
associating to each affine scheme X = SpecR the category of R-modules, and to
each morphism X ′ → X corresponding to a ring homomorphism R → R′, the

extension-of-scalars functors R′-Mod
−⊗RR

′

←−−−−− R-Mod. The natural isomorphisms
between composites of pullback functors are the natural isomorphisms between
itereated tensor products; in particular, their coherence follows from the coherence
of the natural isomorphisms between iterated tensor products.

Remark 1.2.3. “Pseudofunctor” is in quotes because its values can be large cat-
egories (like the category of R-modules), and there is no category of all large
categories unless you adopt a stronger foundation such as Grothendieck universes.
Nevertheless, even without Grothendieck universes, “pseudofunctor” is just as well-
defined a notion as the notion of a large category, but you have to dig into first-order
logic to understand how.

The “pseudo” in “pseudofunctor” refers to the fact that the association of mor-
phisms to pullback functors is only functorial up to an explicit choice of natural
isomorphisms; we would have merely a “functor” in the case where the natural
isomorphisms are all identities.

Definition 1.2.4 (Grothendieck construction). Given a “pseudofunctor” F , we

construct a category (abusively also labeled F) and a functor C p←− F as follows:

(1) The collection of objects of F is the disjoint union of the collections of

objects of F(X) for each X ∈ C; the functor C p←− F sends an object
A ∈ F(X) to X ∈ C.

(2) A morphism A
α−→ B ∈ F from A ∈ F(X) to B ∈ F(Y ) consists of a pair of

morphisms X
f−→ Y ∈ C and f∗B

a←− A ∈ F(X); the functor C p←− F sends

a morphism A
(f,a)−−−→ B to X

f−→ Y .

(3) The composite A
(f,a)−−−→ B

(g,b)−−−→ C is given by A
(g◦f,c)−−−−→ C where the

vertical morphism (g ◦ f)∗C
c←− A is given by the composite (g ◦ f)∗C ∼=

f∗g∗C f∗b←−− B a←− A.

Exercise 1.2.5. Check that the Grothendieck construction does indeed produce a
category. In other words, verify that composition is associative and that the pair

(X
idX−−→ X,A ∼= id∗XA) is an identity morphism for A ∈ F ; you will have to use the

coherence axioms satisfied by the natural isomorphisms of the “pseudofunctor”.

Remark 1.2.6. The vertical fiber p−1(X) of objects mapping to X and morphisms

mapping to X
idX−−→ X is isomorphic to the category F(X). The total category

F associated to a “pseudofunctor” has “vertical” morphisms that are the same
as the values of the “pseudofunctor” and “horizontal” morphisms are the fewest
morphisms that could come from morphisms in C in a sense we make precise below.
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Definition 1.2.7. A functor C p←− F is a fibration if for every morphism X
f−→ Y

and every object B ∈ p−1(Y ), there is a morphism A
α−→ B in F such that

(1) α is a lift of X
f−→ Y in the sense that pα = f .

(2) A
α−→ B is p-cartesian in the sense that whenever the projection pA′

pβ−→
pB = Y of a morphism A′

β−→ B factors as pA′
g−→ pA

pα−−→ pB, A′
β−→ B

factors uniquely as A′
γ−→ A

α−→ B with pγ = g.
In other words, α is p-cartesian if factorizations of p-images through the

p-image of α lift uniquely to factorizations through α.

A cloven fibration is a fibration with a cleavage, that is, a choice of p-cartesian

lifts f∗B → B ∈ F for each pair of a morphism X
f−→ Y ∈ C and an object

B ∈ p−1(Y ).

Remark 1.2.8. As worked out in the exercies below, the Grothendieck construction
produces a cloven fibration out of a pseudofunctor, and inversely every cleavage of
a fibration determines a “pseudofunctor”. The advantage of fibrations over “pseud-
ofunctors” is that the structure of natural isomorphisms between pullback functors
is automatically induced and kept track of by the universal properties of p-cartesian
morphisms. Consequently, the theory of fibrations is simpler to describe and de-
velop than the corresponding theory of “pseudofunctors”.

Example 1.2.9. Consider the codomain functor C cod←−− C→ be the category whose
objecsts are morphisms A → X ∈ C, and whose morphisms are commutative

squares. A lift of a morphism X
f−→ Y ∈ C along an object Y

b←− B in cod−1(Y ) is

an object X
a←− A in cod−1(X) together with a morphism given by a commutative

square

A

a

��

α // B

b
��

X
f
// Y

This lift will be cod-cartesian if whenever we have a pair of morphisms X ′
a′←− A′ β−→

A that form a commutative square with X ′
g−→ X

f−→ Y
b←− B, there is a unique

morhism A′
γ−→ A so that A′

β−→ A factors as A′
β−→ A

α−→ B and the square formed

by X ′
a′←− A′ γ−→ A and X ′

g−→ X
a←− A commutes.

A′

β

%%γ
//

a′

��

A
α //

a

��

B

b

��

X ′
g
// X

f
// Y

By taking g = idX , we see that cod-cartesian squares are pullback squares, and
conversely pullback squares are cod-cartesian by considering the factorization of the

squares formed by X
g◦a′←−−− A β−→ B and X

f−→ Y
b←− B. In particular, the codomain

functor C cod←−− C→ is a fibration if and only if C has pullbacks; a cleavage for

C cod←−− C→ is a choice of pullback squares for any pair of morphisms X
f−→ Y

a←− A.
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Exercise 1.2.10. The pullback lemma from basic category theory states that when
the right-hand square α in the commutativie diagram

•
α

//

��

• //

��

β

•

��
• // • // •

is a pullback square, the the left-hand square α is a pullback square if and only if
the whole rectangle β ◦ α is a pullback square.

Verify that this is a general propery of p-cartesian morphisms for any functor

C p←− F , i.e. if B
β−→ C is p-cartesian, then A

α−→ B is p-cartesian if and only if the
composite β ◦ α is p-cartesian.

Exercise 1.2.11. The functor C p←− F produced by the Grothendieck construction

is a fibration with cleavage given by f∗B
(f,idf∗B)
−−−−−−→ B for any B ∈ p−1(Y ) and

X
f−→ Y .

Reversely, given a morphism X
f−→ Y , a choice of p-cartesian lifts f∗B → B

for each B ∈ p−1(Y ) extends by the universal propery of p-cartesian morphisms

to a pullback functor p−1(X)
f∗←− p−1(Y ). Furthermore, and again by the univer-

sal property of p-cartesian morphisms, a cleavage for a fibration also determines
the requisite coherent natural isomorphisms between composites of the pullback
functors just described.

2. GAGS Talk 2 - May 3, 2017

2.1. Formalizing compatibility: representible fibrations and the Yoneda
lemma.

Example 2.1.1. Consider the domain functor C dom←−−− C→. A lift of a morphism

A
f−→ B ∈ C along an object B

b−→ Y in dom−1(B) is an object X
a−→ A in dom−1(X)

together with a morphism given by a commutative square

A

a

��

f
// B

b
��

X
α // Y

Given a morphism A
f−→ B and an object B

b−→ Y in dom−1(B), a lift is a pair

of morphism X
a−→ A

α−→ B so that the together with X
f−→ Y

b−→ B they form a
commutative square.

This lift is dom-cartesian if for any pair of morphisms A′
a′−→ X ′

β−→ Y determin-

ing a commutative square with A′
g−→ A

f−→ B
b−→ Y , there is a unique morphism

X ′
γ−→ X through which X ′

β−→ Y factors as X ′
γ−→ X

α−→ Y , and such that the
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square determined by A′
a′−→ X ′

γ−→ X and A′
g−→ A

a−→ X commutes.

A′
g
//

a′

��

A
f
//

a

��

B

b

��

X ′
β

77
γ
// X

α // Y

Evidently, A
b◦f−−→ Y

idY−−→ Y determines a dom-cartesian lift. In particular, C dom←−−−
C→ is always a cloven fibration; the “pseudofunctor” determined by the cleavage

that sends X 7→ X/C with pullback functors associated to X
f−→ Y given by pre-

composition X/C f∗←− Y/C (where X/C = dom−1(X) is the category whose objects
are morphisms out of X and whose morphisms are commutative triangles).

Example 2.1.2. Consider the functor C dom←−−− C/X where C/X is the category
whose objects are morphisms A → B and whose morphisms are commutative tri-

angles A

b◦f   

f
// B

b~~

X

. Each morphism in C/X is the unique dom-cartesian

of lift of A
f−→ B ∈ C along the object B

b−→ X of C/X.

Thus C dom←−−− C/X is a fibration. Furthermore, its unique cleavage corresponds
to the representable “functor” sending A ∈ C to the class (i.e. discrete cate-

gory) HomC(A,X), and each A
f−→ B ∈ C to the pre-composition class function

HomC(A,X)
f∗←− HomC(B,X).

Definition 2.1.3. For each object X ∈ C, the fibration C dom←−−− C/X is called a
representable fibration.

Remark 2.1.4. The particular choice of cleavages via pre-composition for the dom-
cartesian lifts of the domain fibration and for the representable fibrations are such
that the natural isomorphisms of the associated “pseudofunctors” are all identities.
Such a cleavage of a fibration is called a splitting, and the Grothendieck construc-
tion actually establishes a correspondence between split fibrations and “functors”.

Example 2.1.5. Suppose S is a class of morphisms into X ∈ C that is stable under

precomposition in the sense that if A
h−→ X factors as A

g−→ B
f−→ X for B

f−→ X ∈ S,

then A
h−→ X ∈ S. By the Grothendieck construction, such a class S corresponds

to a (split) subfibration S ↪→ C/X dom−−−→ C.

Definition 2.1.6. The sieve SU on X generated by a family of morphisms U =
{Ui → X} ∈ C is the fibration corresponding to the pre-composition-stable class

{A h−→ X ∈ C : A
h−→ X factors as A

g−→ B
f−→ X for some B

f−→ X ∈ U}.
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Definition 2.1.7. Given two fibrations C p1←− F and C p2←− G, a functor F a−→ G
is fibered if the triangle F

p1
��

a // G

p2
��

C

commutes and F a−→ G sends p1-

cartesian morphisms to p2-cartesian morphisms.

A natural transformation a
α
=⇒ b : F → G between fibered functors is itself

fibered if the triangle F

p1
��

a

))

b

55�� α G

p2
��

C

commutes in the sense that p1 = p2a
p2α
==⇒

p2b = p1 : F → C is the identity natural transformation.

Lemma 2.1.8 (Yoneda lemma). The evaluation functor [C/X,F ] → F(X) =

p−1(X) sending a fibered natural transformation a
α
=⇒ b to the component a(X

idX←−−

X)
α

X
idX←−−−−−−−→ b(X

idX←−− X) is fully faithful, i.e. bijective on morphisms.

a(X
f←− Y ) = a(f∗(X

idX←−− X)) //

α
X

f←−Y
��

a(X
idX←−− X)

α
X

idX←−−X
��

b(X
f←− Y ) = b(f∗(X

idX←−− X)) // b(X
idX←−− X)

Furthermore, each cleavage of the fibration C p←− F determines a section (up to
a natural isomorphism) p−1(X) ↪→ [C/X,F ] of the evaluation functor given on
morphisms by

(f ◦ g)∗a(X
idX←−− X) = a′(Z

f◦g←−− X)

**

a′(Z
g−→Y )

��

f∗a(X
idX←−− X) = a′(X

f←− Y ) // a(X
idX←−− X)

In particular, each cleavage determines an equivalence of categories p−1(X) =
F(X) ' [C/X,F ].

Exercise 2.1.9. Verify the Yoneda lemma. Explicitly, show that

(1) the vertical morphisms a(X
f←− Y )

α
X

f←−Y−−−−−→ b(X
f←− Y ) induced by the

combination of the universal property of the p-cartesian (since the functor

is fibered) morphism b(X
f←− Y ) = b(f∗(X

idX−−→ X)) → b(X
idX←−− X) over

the morphism Y
f−→ Y in C, and the factorization Y

idY−−→ Y
f−→ X of the

p-image Y
f−→ X

idX−−→ X of the composite a(X
f←− Y ) = a(f∗(X

idX−−→

X))→ a(X ← idXX)
α

X
idX←−−X−−−−−−−→ b(X

idX←−− X) in F assemble into a natural

transformation a
α
=⇒ b;
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(2) defining a′(Z
g−→ Y ) for a morphism Z

f◦g   

g
// Y

f~~

X

in C as the in-

duced morphism by the combination of the universal property of the p-

cartesian f∗(a(X
idX←−− X) → a(X

idX←−− X) over Y
f−→ X and the fac-

torization Z
g−→ Y

f−→ X of the p-image of the p-cartesian morphism

(f ◦ g)∗a(X
idX←−− X)→ a(X

idX←−− X) determines a fibered functor C/X a′−→
F together with an isomorhism a′(X

idX←−− X) ∼= a(X
idX←−− X) in p−1(X) =

F(X).
(3) Whenever a fully faithful functor has a section up to an isomorphism on

objects, the section extends uniquely to section functor up to a natural
isomorphism.

Remark 2.1.10. The usual version of the Yoneda lemma seen in basic category

theory courses is the special case where C p←− F is a (small) discrete fibration, i.e.
where each fiber p−1(X) is a (small) category whose only morphisms are identities.

The proof outlined in the above exercise then reduces to showing 1) that the
evaluation functor is injective (since a fully faithful functor to a discrete category is
the same as a functor injective on objects from a discrete category), and 2) that the
(necessarily unique) cleavage of the discrete fibration determines an actual section
of the (now injective) evaluation functor. This produces the usual isomorphism
between the discrete category HomC(−, X) ∼= F(X) = p−1(X) since an injective
functor with a section is an isomorphism.

2.2. Formalizing compatibility.

Definition 2.2.1. Given a family of morphisms U = {Ui → X} in X and a (cloven)

fibration C p←− F , a category of descent data for U is a category equivalent to the
category of fibered functors and fibered natural transformations [SU ,F ] where SU
is the sieve generated by U .

Example 2.2.2. [SU ,F ] is itself a category of descent data for U . Explicitly,

(1) a descent datum in this category assigns an object Mf ∈ F(V ) = p−1(V )

to each morphism V
f−→ X that factors as V → Ui → X (i.e. to each

morphism in the sieve), together with a choice of compatibility iso-
morphisms Mf

∼= f∗iMi in each F(V ) = p−1(V ) for each factorization

V
fi−→ Ui → X of V

f−→ X, where Mi ∈ F(Ui) = p−1(Ui) is the object
assigned to Ui → X.

(2) a morphism of descent data is a family of morphisms Mf
αf−−→ Nf in

F(V ) = p−1(V ) for each V
f−→ X in the sieve, so that for each factorization

V
fi−→ Ui → X of V

f−→ X the diagrams Mf

∼= //

αf

��

f∗iMi

f∗i αi

��

Nf
∼= // f∗i Ni

commute.

Example 2.2.3. Another category of descent data for U is given as follows.
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(1) A descent datum consists of a choice of objects Mi ∈ F(Ui) = p−1(Ui) for
each Ui → X in U , plus a choice of transfer isomorphisms f∗iMi

∼= f∗jMj

in p−1(V ) ∼= F(V ) for each commutative square V
fi //

fj

��

Ui

��

Uj // X

, subject to

the cocycle condition that the composite f∗iMi
∼= f∗jMj

∼= f∗kMk is the
isomorphism f∗iMi

∼= f∗kMk

(2) A morphism of descent data is a family of morphisms Mi
αi−→ Ni so

that the diagrams f∗iMi

∼= //

f∗i αi

��

f∗jMj

f∗j αj

��

f∗i Ni
∼= // f∗jNj

commute for every commutative

square V
fi //

fj

��

Ui

��

Uj // X

.

Example 2.2.4. Suppose that C is equipped with a choice of pullback cubes

Ui,j,k
πi

//

πj

��

πk

||

Uj,k

πk

��

πj
}}

Ui,j

πi

��

πj

// Uj

��

Ui,k
πk //

πi

||

Uk

}}

Ui // X

for each triple of morphisms Ui, Uj , Uk → X. Then the following is a category of
descent data for U :

(1) A descent datum consists of objects Mi ∈ F(Ui) = p−1(Ui) together with
transition isomorphisms φi,j : Mi,j

∼= Mj,i where Mi,j = π∗iMi for the

pullback morphism Ui×Uj
πj−→ Uj , and subject to the cocycle condition

that the composite Mi,k,j
∼= Mi,j,k

πk,∗φi,j∼= Mj,i,k
∼= Mj,k,i

πi,∗φj,k∼= Mk,j,i
∼=

Mk,i,j is the isomorphism Mi,k,j

πj,∗φi,j∼= Mk,i,j , where Mi,j,k = πk,∗π∗iMi.
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(2) A morphism of descent data is a family of morphisms Mi
αi−→ Ni

compatible with the transfer isomorphisms in the sense that the square

Mi,j
φi,j

∼= //

π∗i αi

��

Mj,i

π∗jαj

��

Ni,j
ψi,j

∼= // Nj,i

.

Exercise 2.2.5. Verify that the functors from [SU ,F ] to each of the above two
categories of descent data are fully faithful and essentially surjective.

Definition 2.2.6. Given a family U of morphisms {Ui → X} in a category C, and

a (cloven) fibration C p←− F , we say that the fibration is

(1) a prestack if the natural functor [SU ,F ] ← [C/X,F ] induced by the
(fibered) inclusion SU ↪→ C/X is fully faithful;

(2) a stack if the natural functor [SU ,F ]← [C/X,F ] is both fully faithful and
essentially surjective.

Example 2.2.7. When C p←− F is a discrete fibration, we can think of the associated
“functor” F as a “class”-valued presheaf. Then being fully faithful corresponds to
the comparison functor being injective, and hence to the presheaf being separated.
On the other hand, being fully faithful and essentially surjective corresponds to the
comparision functor being bijective, and hence to the presheaf being a sheaf.


