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1.

(a) Give an example of a ring R and a short exact sequence of R-modules 0 →
A→ B → C → 0 that is not split exact.

(b) Give an example of a flat Z-module that is not free.
(c) Describe all zero-divisors and all units in Q[x]/(x2 − 1).

2. For a finite group G, denote by s(G) the number of its subgroups.

(a) Show that s(G) is finite.
(b) Show that if H is a nontrivial normal subgroup of G, then s(G/H) < s(G).
(c) Show that s(G) = 2 if and only if G is cyclic of prime order.
(d) Show that s(G) = 3 if and only if G is a cyclic group whose order is a square

of a prime.

3. Denote by Mn(R) the ring of all n× n matrices over R.

(a) Show that for any A ∈ Mn(R), there exists B ∈ Mn(R) such that AB = 0
and rk(A) + rk(B) = n.

(b) Prove or disprove that for any A ∈ Mn(R), there exists B ∈ Mn(R) such
that AB = BA = 0 and rk(A) + rk(B) = n.

4.

(a) Give an example of a field extension K/Q whose Galois group is Z/4Z, and
prove that it is such an example.

(b) Let K be the field Fq(t) and let L = Fq(t1/p). The extension L/K is insepara-
ble, thus not Galois. Explain why there are no nontrivial field automorphisms
of L fixing K.

5. Let A be a two-dimensional (unital) algebra over a field F . This means that A
is an associative, but not necessarily commutative, ring with a unit that contains F
as a subring such that the elements of F commute with all alements of A (that is,
F is in the center) and A is two-dimensional as a vector space over F .

(a) Show that A must in fact be commutative.
(b) Show that if F is algebraically closed, then either A ' F × F or A '

F [x]/(x2).
(c) Suppose F = R. List (with a proof) all possibilities for A, up to isomorphism.



Solutions

1. (a) Many different examples: for instance, the sequence 0→ 2Z→ Z→ Z/2Z→
0 of Z-modules.

(b) Q.
(c) Zero divisors are (nonzero) multiples of x− 1 or of x+ 1. All other non-zero

elements are units.

2. (a) Clearly, s(G) is less than the number of all subsets of G, which is finite.
(b) Recall that there is a bijection between subgroups of G/H and subgroups of G

containing H. Since G has at least one subgroup that does not contain H (namely,
{e}) we get the desired inequality.

(c) Clearly, G 6= {e} (otherwise s(G) = 1). Hence, the only subgroups of G are
{e} and G. Take any a ∈ G−{e}. The cyclic subgroup generated by a must coincide
with G, therefore, G is cyclic; that is, G ' Z/nZ for some n. Recall that Z/nZ has
one subgroup of order m for every divisor m of n, so that s(Z/nZ) = σ0(n) (the
number of divisors of n). We need σ0(n) = 2, which is equivalent to n being prime.

(d) Now, G must have one more subgroup H ⊂ G, in addition to G and {e}.
Then any x ∈ G −H generates G, and we again have G ' Z/nZ. Now σ0(n) = 3,
which is equivalent to n being a square of a prime number.

3. Let us prove (b); obviously, (a) is a special case. Let us view matrices as
linear maps from Rn to itself. Then the condition AB = BA = 0 is equivalent to
requiring that B|im(A) = 0 and im(B) ⊂ ker(A). So take B to be any isomorphism
Rn/ im(A) ' ker(A) (or rather the composition of such an isomorphism with the
natural projection Rn → Rn/ im(A)). Such an isomorphism exists because both
spaces have dimension equal to n− rk(A).

4. (a) Let ζ = exp(2πi5 ) be the primitive fifth root of unity. It is the root of the

cyclotomic polynomial x5−1
x−1 = x4 + x3 + x2 + x+ 1, which is irreducible (as can be

seen by applying the Eisenstein Criterion after the variable change t = x− 1). The
other roots of this polynomial are ζ2, ζ3, and ζ4, which all belong to L := Q(ζ).
Therefore, L/Q is a Galois extension. Its Galois group is (Z/5Z)× ' Z/4Z.

(b) We have L = K(t1/p), so it suffices to show that any automorphism that fixes

K must fix α := t1/p. Indeed, α is a root of the polynomial xp− t over K. Since over
L, we have (xp− t) = (x−α)p, α is the only root of this polynomial (of multiplicity
p). Since an automorphism that fixes K must send α to a root of this polynomial,
we get the required statement.

5. (a) Take any x ∈ A − F . Since {1, x} are linearly independent, they form an
F -basis of A. Therefore, it remains to notice that

(a+ bx)(c+ dx) = ac+ bcx+ adx+ bdx2 = (c+ dx)(a+ bx) for all a, b, c, d ∈ F.
(b) Let x be as before. Since x2 is a linear combination of {1, x}, x must satisfy

an equation x2 + ax+ b = 0. The map

F [x]/(x2 + ax+ b)→ A

is surjective; since it is a linear map between vector spaces ofthe same dimension, it
must be an isomorphism. Thus, A ' F [x]/(x2 + ax+ b).

Replacing x with x+ (a/2), we may assume that the equation on x is of the form
x2 + b = 0. If b 6= 0, we may replace x with x/

√
−b, and reduce to one of the two



cases: either b = 0, and A ' F [x]/(x2), or b = −1 and

A ' F [x]/(x2 − 1) ' F [x]/(x− 1)× F [x]/(x+ 1) ' F × F.
(The last line used the Chinese Remainder Theorem, but of course it is not hard to
check directly.)

(c) We can argue as in part (b), but now the case b 6= 0 splits into two cases:

b > 0 and b < 0. In either situation, we may replace x with x/
√
|b|, giving three

possibilities: b = 0, b = −1, and b = 1. As in part (b), the first two possibilities lead
to R[x]/(x2) and R × R, while the third gives R[x]/(x2 + 1) ' C. It is clear that
these three algebras are non-isomorphic: C is a field, R × R has zero divisors, but
no non-trivial nilpotents, while R[x]/(x2) has nilpotents.


