ALGEBRA QUALIFYING EXAM, AUGUST 2018

Draft 08/13

1.

- (a) Give an example of a ring R and a short exact sequence of R-modules $0 \to A \to B \to C \to 0$ that is not split exact.
- (b) Give an example of a flat \mathbb{Z} -module that is not free.
- (c) Describe all zero-divisors and all units in $\mathbb{Q}[x]/(x^2-1)$.
- **2.** For a finite group G, denote by s(G) the number of its subgroups.
 - (a) Show that s(G) is finite.
 - (b) Show that if H is a nontrivial normal subgroup of G, then s(G/H) < s(G).
 - (c) Show that s(G) = 2 if and only if G is cyclic of prime order.
 - (d) Show that s(G) = 3 if and only if G is a cyclic group whose order is a square of a prime.
- **3.** Denote by $M_n(\mathbb{R})$ the ring of all $n \times n$ matrices over \mathbb{R} .
 - (a) Show that for any $A \in M_n(\mathbb{R})$, there exists $B \in M_n(\mathbb{R})$ such that AB = 0 and $\mathrm{rk}(A) + \mathrm{rk}(B) = n$.
 - (b) Prove or disprove that for any $A \in M_n(\mathbb{R})$, there exists $B \in M_n(\mathbb{R})$ such that AB = BA = 0 and rk(A) + rk(B) = n.

4.

- (a) Give an example of a field extension K/\mathbb{Q} whose Galois group is $\mathbb{Z}/4\mathbb{Z}$, and prove that it is such an example.
- (b) Let K be the field $\mathbb{F}_q(t)$ and let $L = \mathbb{F}_q(t^{1/p})$. The extension L/K is inseparable, thus not Galois. Explain why there are no nontrivial field automorphisms of L fixing K.
- **5.** Let A be a two-dimensional (unital) algebra over a field F. This means that A is an associative, but not necessarily commutative, ring with a unit that contains F as a subring such that the elements of F commute with all alements of F (that is, F is in the center) and F is two-dimensional as a vector space over F.
 - (a) Show that A must in fact be commutative.
 - (b) Show that if F is algebraically closed, then either $A \simeq F \times F$ or $A \simeq F[x]/(x^2)$.
 - (c) Suppose $F = \mathbb{R}$. List (with a proof) all possibilities for A, up to isomorphism.

Solutions

- **1.** (a) Many different examples: for instance, the sequence $0 \to 2\mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0$ of \mathbb{Z} -modules.
 - (b) Q.
- (c) Zero divisors are (nonzero) multiples of x-1 or of x+1. All other non-zero elements are units.
- **2.** (a) Clearly, s(G) is less than the number of all subsets of G, which is finite.
- (b) Recall that there is a bijection between subgroups of G/H and subgroups of G containing H. Since G has at least one subgroup that does not contain H (namely, $\{e\}$) we get the desired inequality.
- (c) Clearly, $G \neq \{e\}$ (otherwise s(G) = 1). Hence, the only subgroups of G are $\{e\}$ and G. Take any $a \in G \{e\}$. The cyclic subgroup generated by a must coincide with G, therefore, G is cyclic; that is, $G \simeq \mathbb{Z}/n\mathbb{Z}$ for some n. Recall that $\mathbb{Z}/n\mathbb{Z}$ has one subgroup of order m for every divisor m of n, so that $s(\mathbb{Z}/n\mathbb{Z}) = \sigma_0(n)$ (the number of divisors of n). We need $\sigma_0(n) = 2$, which is equivalent to n being prime.
- (d) Now, G must have one more subgroup $H \subset G$, in addition to G and $\{e\}$. Then any $x \in G H$ generates G, and we again have $G \simeq \mathbb{Z}/n\mathbb{Z}$. Now $\sigma_0(n) = 3$, which is equivalent to n being a square of a prime number.
- **3.** Let us prove (b); obviously, (a) is a special case. Let us view matrices as linear maps from \mathbb{R}^n to itself. Then the condition AB = BA = 0 is equivalent to requiring that $B|_{\operatorname{im}(A)} = 0$ and $\operatorname{im}(B) \subset \ker(A)$. So take B to be any isomorphism $\mathbb{R}^n/\operatorname{im}(A) \simeq \ker(A)$ (or rather the composition of such an isomorphism with the natural projection $\mathbb{R}^n \to \mathbb{R}^n/\operatorname{im}(A)$). Such an isomorphism exists because both spaces have dimension equal to $n \operatorname{rk}(A)$.
- **4.** (a) Let $\zeta = \exp(\frac{2\pi i}{5})$ be the primitive fifth root of unity. It is the root of the cyclotomic polynomial $\frac{x^5-1}{x-1} = x^4 + x^3 + x^2 + x + 1$, which is irreducible (as can be seen by applying the Eisenstein Criterion after the variable change t = x 1). The other roots of this polynomial are ζ^2 , ζ^3 , and ζ^4 , which all belong to $L := \mathbb{Q}(\zeta)$. Therefore, L/\mathbb{Q} is a Galois extension. Its Galois group is $(\mathbb{Z}/5\mathbb{Z})^{\times} \simeq \mathbb{Z}/4\mathbb{Z}$.
- (b) We have $L = K(t^{1/p})$, so it suffices to show that any automorphism that fixes K must fix $\alpha := t^{1/p}$. Indeed, α is a root of the polynomial $x^p t$ over K. Since over L, we have $(x^p t) = (x \alpha)^p$, α is the only root of this polynomial (of multiplicity p). Since an automorphism that fixes K must send α to a root of this polynomial, we get the required statement.
- **5.** (a) Take any $x \in A F$. Since $\{1, x\}$ are linearly independent, they form an F-basis of A. Therefore, it remains to notice that

$$(a+bx)(c+dx) = ac + bcx + adx + bdx^2 = (c+dx)(a+bx)$$
 for all $a,b,c,d \in F$.

(b) Let x be as before. Since x^2 is a linear combination of $\{1, x\}$, x must satisfy an equation $x^2 + ax + b = 0$. The map

$$F[x]/(x^2 + ax + b) \to A$$

is surjective; since it is a linear map between vector spaces of the same dimension, it must be an isomorphism. Thus, $A \simeq F[x]/(x^2 + ax + b)$.

Replacing x with x + (a/2), we may assume that the equation on x is of the form $x^2 + b = 0$. If $b \neq 0$, we may replace x with $x/\sqrt{-b}$, and reduce to one of the two

cases: either b = 0, and $A \simeq F[x]/(x^2)$, or b = -1 and

$$A \simeq F[x]/(x^2 - 1) \simeq F[x]/(x - 1) \times F[x]/(x + 1) \simeq F \times F.$$

(The last line used the Chinese Remainder Theorem, but of course it is not hard to check directly.)

(c) We can argue as in part (b), but now the case $b \neq 0$ splits into two cases: b > 0 and b < 0. In either situation, we may replace x with $x/\sqrt{|b|}$, giving three possibilities: b = 0, b = -1, and b = 1. As in part (b), the first two possibilities lead to $\mathbb{R}[x]/(x^2)$ and $\mathbb{R} \times \mathbb{R}$, while the third gives $\mathbb{R}[x]/(x^2+1) \simeq \mathbb{C}$. It is clear that these three algebras are non-isomorphic: \mathbb{C} is a field, $\mathbb{R} \times \mathbb{R}$ has zero divisors, but no non-trivial nilpotents, while $\mathbb{R}[x]/(x^2)$ has nilpotents.