ALGEBRA QUALIFYING EXAM, AUGUST 2016

- **1.** Let G be a group. By a maximal subgroup of G we mean a subgroup $M \neq G$ such that the only subgroups containing M are M and G.
 - (a) Describe all the maximal subgroups of the dihedral group of order 2p, where p is an odd prime. How many are there?
 - (b) Show that if a finite group G has only one maximal subgroup, then G is cyclic.
 - (c) Show that if a maximal subgroup $M \subset G$ is normal, then the index of M in G is finite and prime.
- **2.** Let V denote a nonzero finite-dimensional vector space over the complex field \mathbb{C} . Given a linear transformation $A:V\to V$, show that the following are equivalent:
 - (i) There exists a linear transformation $P: V \to V$ such that $P^2 = I$ and AP = -PA;
 - (ii) There exists an invertible linear transformation $P: V \to V$ such that AP = -PA:
 - (iii) There exists a direct sum decomposition $V = V_1 \oplus V_2$ such that $AV_1 \subseteq V_2$ and $AV_2 \subseteq V_1$.
- **3.** Let R be the subring of $\mathbb{C}[x,y]$ consisting of the polynomials P(x,y) such that P(x,y) = P(y,x).
 - (a) Show that R is generated as a \mathbb{C} -algebra by x + y and xy.
 - (b) Show that the map $\mathbb{C}[u,v] \to R$ sending u to x+y and v to xy is an isomorphism.
 - (c) Let S be the subring of $\mathbb{C}[x,y]$ consisting of the polynomials P(x,y) such that P(x,y) = P(-x,-y). Can S be generated as a \mathbb{C} -algebra by two polynomials? Either give two generators, or prove that S is not generated by 2 polynomials.
- **4.** Let R be a commutative ring. A prime ideal $\mathfrak{p} \subset R$ is called *minimal* if $\mathfrak{q} \subseteq \mathfrak{p}$ for a prime ideal \mathfrak{q} implies that $\mathfrak{q} = \mathfrak{p}$.
 - (a) Determine the minimal primes of R = k[x,y]/(xy), where k is a field.
 - (b) Prove that if there exists a surjective map of R-modules $R^m \to R^n$ for positive integers m and n then $m \ge n$.
 - (c) Assume that R has no nilpotents. Prove that if there exists an injective map of R-modules $R^m \to R^n$ then $m \le n$. Hint: show that under these assumptions, $R_{\mathfrak{p}}$ is a field when \mathfrak{p} is minimal. You may use without proof that minimal primes exist in any commutative ring.
- **5.** Put $\alpha := e^{\frac{2\pi\sqrt{-1}}{7}}$, and consider the field $K := \mathbb{Q}(\alpha)$. Find an element $x \in K$ such that $[\mathbb{Q}(x):\mathbb{Q}]=2$. (Proving that such x exists would earn you partial credit; for full credit, express x explicitly as a polynomial in α , such as $42\alpha^3-1337\alpha^5$.)