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Common questions

Problem 1. For n ≥ 2 an integer, define F (n) to be the function F (n) = max{k ∈ Z : 2k/k ≤ n}.
Does

∑∞
n=2 2−F (n) converge or diverge?

Discussion – first solution. For any n ≥ 2 we have

2F (n)

F (n)
≤ n < 2F (n)+1

F (n) + 1
.

Taking base-2 logarithms (lg x = log2 x) we find

F (n)− lgF (n) ≤ lg n < F (n) + 1− lg
(
F (n) + 1

)
.

Since lg x = o(x) for x → ∞, we have lgF (n) = o(F (n)), so that F (n) = lg n + o(F (n)), which
implies F (n) = lg n+ o(lg n) as n→∞.

Thus we can estimate the terms in our sum by

2−F (n) =
1

nF (n)
=

1

n(1 + o(1)) lg n
=

1 + o(1)

n lg n
(n→∞).

Since the series
∑

(n lg n)−1 diverges, the series
∑

2−F (n) also diverges.

Second solution. By definition k = F (n) holds if and only if

2k

k
≤ n < 2k+1

k + 1
.

For any given integer k ∈ N there are therefore exactly⌊
2k+1

k + 1

⌋
−
⌊

2k

k

⌋
values of n such that F (n) = k. Therefore

∞∑
n=2

2−F (n) =

∞∑
k=F (2)

2−k
(⌊

2k+1

k + 1

⌋
−
⌊

2k

k

⌋)

≥
∞∑

k=F (2)

2−k
(

2k+1

k + 1
− 2k

k
− 1

)

=

∞∑
F (2)

(
2

k + 1
− 1

k
− 2−k

)

=

∞∑
F (2)

(
k − 1

k(k + 1)
− 2−k

)
The geometric series

∑
2−k converges, but the series

∑ k−1
k(k+1) diverges because k−1

k(k+1) ≥
C
k for

some constant C.

Hence the series
∑

n≥2 2−F (n) also diverges.
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Problem 2. Let an be a sequence of complex numbers. Suppose that

lim
n→∞

1

n

n∑
i=1

ai = L,

and
∞∑
n=1

n|an+1 − an|2 <∞.

Prove that an → L.

Discussion. For any sequence an it can happen that the averages bn = (a1 + · · ·+ an)/n converge
even though the an themselves do not converge (e.g. think of an = (−1)n: averaging reduces the
oscillations the sequence an may have). The second piece of information in the problem provides a
bound for the size of the oscillations in the sequence an. In the following we show that the average
of {an+1, . . . , a2n} also converges to L by writing it in terms of the averages of {a1, . . . , an} and
of {a1, . . . , a2n}. We then use the fact that

∑
k|ak+1 − ak|2 < ∞ to show that the average of

{an+1, . . . , a2n} is approximately equal to an itself, so that an → L follows.

We have

lim
n→∞

1

n

2n∑
k=n+1

ak = lim
n→∞

{
2 · 1

2n

2n∑
k=1

ak −
1

n

n∑
k=1

ak

}
= 2L− L = L.

For n+ 1 < k ≤ 2n we also have

ak − an =
k∑

i=n+1

ai − ai−1

so that ∣∣∣∣∣
∑2n

n+1 ak

n
− an

∣∣∣∣∣ =

∣∣∣∣∣
∑2n

n+1(ak − an)

n

∣∣∣∣∣ =
1

n

∣∣∣∣∣
2n∑
n+1

k∑
n+1

(
ai − ai−1

)∣∣∣∣∣ .
For each k we have ∣∣∣∣∣

k∑
n+1

(ai − ai−1)

∣∣∣∣∣ ≤
2n∑
n+1

|ai − ai−1|,

so ∣∣∣∣∣
∑2n

n+1 ak

n
− an

∣∣∣∣∣ ≤
2n∑
n+1

|ai − ai−1|.

Applying Cauchy’s inequality we find∣∣∣∣∣
∑2n

n+1 ak

n
− an

∣∣∣∣∣ ≤
√√√√ 2n∑

n+1

1

i

√√√√ 2n∑
n+1

i|ai − ai−1|2 ≤

√√√√ ∞∑
n+1

i|ai − ai−1|2

where we have used that
∑2n

n+1
1
i <

∑2n
n+1

1
n = 1. Since we are given that the series

∑
i|ai − ai−1|2

converges, we conclude that

lim
n→∞

∣∣∣∣∣
∑2n

n+1 ak

n
− an

∣∣∣∣∣ = 0.

Hence lim an = L.
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Problem 3. Let 0 < α < 1. A function f ∈ C([0, 1]) is said to be Hölder continuous of order α if
there is a constant C > 0 such that

|f(x)− f(y)| ≤ C|x− y|α

for all x, y ∈ [0, 1]. Show that for every 0 < α < 1, the function

f(x) =
∞∑
n=1

2−nα cos(2nx)

is Hölder continuous of order α.

Discussion. In a direct attack on the problem one would try to estimate

f(x)− f(y) =

∞∑
n=1

2−nα
(
cos(2nx)− cos(2ny)

)
by using

| cosA− cosB| ≤ |A−B|, and thus |cos 2nx− cos 2ny| ≤ 2n|x− y|,
which follows from the mean value theorem and the fact that | sin θ| ≤ 1. This leads to

|f(x)− f(y)| ≤
∞∑
n=1

2−nα
∣∣2nx− 2ny

∣∣ =
∞∑
1

2(1−α)n|x− y|.

Unfortunately the series diverges because 1 − α ≥ 0, so this does not lead to anything. Looking
back we see that the estimate

|cos 2nx− cos 2ny| ≤ 2n|x− y|

is wasteful when n is large, and can be improved by observing

|cos 2nx− cos 2ny| ≤ |cos 2nx|+ |cos 2ny| ≤ 2.

We now have two estimates for |cos 2nx− cos 2ny|, one of which is better for small n while the
other is better for large n. Let N ∈ N be some integer, to be chosen below. Then we can estimate
f(x)− f(y) by

|f(x)− f(y)| ≤
N∑
1

2−nα2n|x− y|+
∞∑
N+1

2−nα · 2

≤
N∑
−∞

2(1−α)n|x− y|+ 2 ·
∞∑
N+1

2−nα (sum the two geometric series)

= 2 · 2N(1−α)

1− 2α−1
|x− y|+ 2

2−(N+1)α

1− 2−α

≤ Cα
{

2N |x− y|+ 1
}

2−Nα.

Here Cα is a constant that only depends on α. We now choose N so that

2N |x− y| ≤ 1 < 2N+1|x− y|,

and conclude that indeed

|f(x)− f(y)| ≤ C ′α|x− y|α.
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Problem 4. Let f : [0, 1]→ R be continuous with

min
0≤x≤1

f(x) = 0.

Assume that for all 0 ≤ a ≤ b ≤ 1 we have∫ b

a
[f(x)− min

a≤y≤b
f(y)]dx ≤ |b− a|

2
.

Prove that for all λ ≥ 0 we have

|{x : f(x) > λ+ 1}| ≤ 1
2 |{x : f(x) > λ}|.

Here, |S| denotes the Lebesgue measure of a set S.

Discussion. Let λ > 0 be given, and consider Eλ = f−1
(
(λ,∞)

)
. Clearly Eλ+1 ⊂ Eλ. The

problem asks us to show that |Eλ+1| ≤ 1
2 |Eλ|.

The set Eλ ⊂ [0, 1] is open, and therefore is the union of a countable number of intervals:

Eλ = ∪iIλi.

On each interval Iλi we have infIλi f(x) = λ, because min0≤x≤1 f(x) = 0, and because f is contin-
uous. Thus on each Iλi we have

|Eλ+1 ∩ Iλi| ≤
∫
Eλ+1∩Iλi

(
f(x)− λ

)
dx ≤

∫
Iλi

(
f(x)− λ

)
dx ≤ 1

2
|Iλi|.

Thus

|Eλ+1| =
∑
i

|Eλ+1 ∩ Iλi| ≤
∑
i

1

2
|Iλi| =

1

2
|Eλ|,

which is what we had to show.

Problem 5. Give an example of a non-empty closed subset of L2([0, 1]) that does not contain a
vector of smallest norm. Prove your assertion.

Discussion. Let φn be any orthonormal set of functions in L2([0, 1]), e.g. φn(x) =
√

2 sinnπx.
Then the set

C =
{
n+1
n φn : n ∈ N

}
is closed, nonempty, and does not contain a function with least norm.

To see that C is closed, note that by Pythagoras

‖φn − φm‖2 =

√(n+ 1

n

)2
+
(m+ 1

m

)2
≥
√

2,

so all points in C are isolated, and C must indeed be closed.

On the other hand

inf
n∈N
‖φn‖2 = inf

n∈N

n+ 1

n
= 1

while ‖φn‖ > 1 for all n ∈ N.
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Problem 6. Let f be a non-negative measurable function on [0, 1]. Prove that the following
statements are equivalent.

(1) There exists a > 0 such that ∫ 1

0
eaf(x)dx <∞.

(2) There exists C > 0 such that(∫ 1

0
f(x)pdx

)1/p

≤ Cp for all 1 ≤ p <∞.

Discussion: (1) =⇒ (2). For any integer n ∈ N and any x ≥ 0 we have

xn

n!
≤ 1 + x+

x2

2!
+ · · ·+ xn

n!
+ · · · = ex.

Hence ∫ 1

0
f(x)ndx ≤ n!a−n

∫ 1

0
eaf(x)dx.

Take the nth root:

‖f‖n ≤ C(n!)1/n < Cn,

because n! = 1 · 2 · · ·n < nn.

Thus we have shown ‖f‖n ≤ Cn for all positive integers n. For any non integer p ∈ [1,∞) we
choose n ∈ N so that p ≤ n and use ‖f‖p ≤ ‖f‖n. The latter inequality follows from Hölder’s
inequality:

‖f‖pp =

∫ 1

0
f(x)p dx ≤

(∫ 1

0
f(x)n dx

) p
n
(∫ 1

0
1

n
n−p dx

)1− p
n

= ‖f‖pn.

In this derivation we used n! < nn, which is the simplest approach Alternatively, one can use
Stirling’s approximation,

n! =
√

2πnnne−n+o(1) (n→∞),

which implies

(n!)1/n = (1 + o(1))1/n (2πn)1/n
n

e
≤ Cn.

A variation on this solution. Begin with the observation that 1 +x ≤ ex for all x ≥ 0, and thus(x
p

)p
≤
(

1 +
x

p

)p
≤
(
ex/p

)p
= ex.

This implies

1

pp
‖f‖pp = a−p

∫ ∣∣∣∣af(x)

p

∣∣∣∣p dx ≤ a−p ∫ eaf(x)dx,

and thus

‖f‖p ≤
p

a

∫
eaf(x)dx.

In this approach p is not restricted to integer values.
5



(2) =⇒ (1). To prove the converse we expand eaf(x) in a power series and compute∫ 1

0
eaf(x)dx =

∞∑
k=0

an

n!

∫ 1

0
f(x)ndx ≤

∞∑
k=0

an

n!
Cnnn.

The series converges if a > 0 is small enough, e.g. by looking at the ratio between consecutive terms

lim
n→∞

an+1

(n+1)!C
n+1(n+ 1)n+1

an

n!C
nnn

= lim
n→∞

aC
(n+ 1

n

)n
= eaC.

Thus the series converges when a < (eC)−1; for those a we then also have∫ 1

0
eaf(x)dx <∞.

Math 722 questions

Problem 7. Suppose that |a| 6= 1. Compute the integral

∫ 2π

0

cos2 3φ

1− 2a cosφ+ a2
dφ

Discussion. We substitute t = eiφ, which leads to

Ia =

∫ 2π

0

cos2 3φ

1− 2a cosφ+ a2
dφ =

∫
C

(12)2
(
t3 + t−3

)2
1− a

(
t+ t−1

)
+ a2

dt

it

=
1

4i

∫
C

t6 + 2 + t−6

t− at2 − a+ a2t
dt

=
1

4i

∫
C

t6 + 2 + t−6

(t− a)(1− at)
dt

where C is the unit circle, traversed counterclockwise. We can find the integral by computing the
residues of the poles of the integrand that lie inside the unit circle. There are two poles, namely,
t = 0 and t = a or t = 1/a, depending on whether |a| < 1 or |a| > 1 (the case a = 0 should be
treated separately).

We can avoid computing the residue at t = 0 by observing that

1

4i

∫
C

t−6

(t− a)(1− at)
dt =

1

4i

∫
C

r6

(r − a)(1− ar)
dr,

which follows by substituting t = 1/r, and which is perhaps easier to see from the original unex-
panded form of the integral∫

C

t6

1− a
(
t+ t−1

)
+ a2

dt

it
=

∫
C

r−6

1− a
(
r + r−1

)
+ a2

dr

ir
.

Note that dt/t = −dr/r, and that the transformation t 7→ 1/t reverses the orientation of the path
C.

The upshot is

Ia =
1

4i

∫
C

2t6 + 2

(t− a)(1− at)
dt =

1

2i

∫
C

t6 + 1

(t− a)(1− at)
dt.
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If |a| < 1 then

Ia = 2πi Res
( 1

2i

t6 + 1

(t− a)(1− at)
, t = a

)
= π

1 + a6

1− a2
.

If |a| > 1 then

Ia = 2πi Res
( 1

2i

t6 + 1

(t− a)(1− at)
, t = 1/a

)
= π

1 + a−6

1− a2
.

Problem 8. Suppose that f ∈ C2([0, 1]) is real valued and satisfies |f(1)| > |f(0)|. Prove that

F (z) =

∫ 1

0
f(t) sin(tz)dt

has infinitely many real roots and only finitely many strictly complex roots.

Discussion. Integrate by parts, twice:

F (z) =
[
−f(t) cos(tz)/z + f ′(t) sin(tz)/z2

]1
t=0
−
∫ 1

0
f ′′(t)

cos tz

z2
dt.

Hence

zF (z) = f(0)− f(1) cos z + f ′(1)
sin z

z
− 1

z

∫ 1

0
f ′′(t) cos tz dt.

This identity shows that for large z the function zF (z) is a close to

G(z) = f(0)− f(1) cos z,

and thus its zeros will also be close. We can use Rouché’s theorem (the winding number on the
boundary determines the number of zeros in a region) to make this precise.

To estimate the size of sin z and cos z when z is complex we use the addition formulas

sin(x+ iy) = sinx cosh y + i sinhx cos y, cos(x+ iy) = cosx cosh y − i sinx sinh y

which, in view of
sin2 x+ cos2 x = cosh2 y − sinh2 y = 1,

imply

| sin(x+ iy)|2 = sin2 x+ sinh2 y

| cos(x+ iy)|2 = cos2 x+ sinh2 y.

Step 1. With these identities we now first show that zF (z) has no roots z = x+ iy with |y| ≥ A,
for some A to be determined.

If |y| ≥ A, then

|G(z)| ≥ |f(1)| | cos(x+ iy)| − |f(0)| ≥ |f(1)| | sinh y| − |f(0)|.
Furthermore, |y| ≥ A also implies

|zF (z)−G(z)| ≤ 1

|z|

{
|f ′(1)| cosh y + sup

0≤t≤1
|f ′′(t)| cosh y

}
≤ C

A
cosh y,

where C is a constant that only depends on the function f . We now choose A so large that

|f(1)| | sinh y| − |f(0)| > C

A
cosh y

whenever |y| ≥ A. If A is chosen this way, then we have

|zF (z)| ≥ |G(z)| − |zF (z)−G(z)| > 0
7



for all z = x+ iy with |y| ≥ A. Thus all roots of zF (z) lie in the strip −A < y < A.

Step 2. Consider the sequence of rectangles

Rn = {z = x+ iy ∈ C : nπ < x < (n+ 1)π, |y| < A}.
We have

|G(nπ + iy)| = |f(0)− (−1)nf(1) cosh y| ≥ |f(1)| cosh y − |f(0)| ≥ |f(1)| − |f(0)|,
so that |f(1)| > |f(0)| implies that G(z) 6= 0 on the boundary of Rn. The number of zeros of G(z)
therefore does not change if one changes the parameters f(0), f(1), and we conclude that G(z) has
the same number of zeros as cos z in the rectangle Rn, namely, exactly one.

On the vertical side z = n+ iy, |y| ≤ A, of Rn we have

|zF (z)−G(z)| ≤ 1

|z|

{
|f ′(1)| cosh y + sup

0≤t≤1
|f ′′(t)| cosh y

}
≤ C

n
coshA.

For

n >
C coshA

|f(1)| − |f(0)|
we therefore have

|zF (z)−G(z)| < |f(1)| − |f(0)| ≤ |G(z)|.
By Rouché’s theorem the functions zF (z) and G(z) have the same number of zeros in Rn, i.e. F (z)

has exactly one zero in Rn. Since f(t) is real valued, we have F (z̄) = F (z), so the unique zero of
F (z) in Rn must be real.

Problem 9. Let f(z) be the function defined for Re z > 0 by f(z) =
∑∞

n=1 exp(−n!z). Prove that
f cannot be analytically continued to any connected open subset of the complex plane that strictly
contains {z ∈ C : Re z > 0}.

Discussion. Any open connected subset Ω of the complex plane that strictly contains the right
half plane must contain an open subset of the imaginary axis, and thus it must contain a point of
the form 2πri with r ∈ Q. If f can be extended to an analytic function on Ω then f(z) will have
a limit (namely f(2πri)) as z approaches 2πri from within the right half plane. We will show that
this limit does not exist, so that f cannot be extended to Ω.

Let r = p
q and consider the fact that for z = x+ 2π pq i with x > 0 we can write f(z) as

f(z) =

q∑
n=1

e−n!z +
∞∑

n=q+1

e−n!x.

The first terms represent an entire function of z, while the remaining series is real valued if x > 0
is real. By monotone convergence we have

∞∑
n=q+1

e−n!x →∞ as x↘ 0.

This shows that although the holomorphic function f(z) is defined on the right half plane {z ∈
C : Re z > 0}, the function f(z) has no limit as z approaches 2pqπi. The function therefore has no

analytic continuation beyond the right half plane.
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Math 725 questions

Problem 7.

A. For which m ∈ Z does there exist a tempered distribution Λm ∈ S′(Rd) such that Λm agrees
with |x|−m on Rd\{0}? For each m, either prove that no such distribution exists or give an example
of one.

B. Does there exist Λ ∈ S′(R) such that Λ agrees with e1/|x| on R \ {0}?

Discussion – Part A. A linear functional Λ : S(Rd)→ R defines a tempered distribution if it is a
continuous linear functional, i.e. if for some k ∈ N there is a Ck <∞ such that for all test functions
φ ∈ S(Rd) one has

|〈Λ, φ〉| ≤ Ck‖φ‖k,
where, by definition,

‖φ‖k = sup
x∈Rd,|α|≤k

(
1 + |x|2

)k/2|Dαφ(x)|.

Two tempered distributions Λ, Λ̃ ∈ S′(Rd) agree on some open set Ω ⊂ Rd if 〈Λ, φ〉 = 〈Λ̃, φ〉 holds
for all φ ∈ S(Rd) with suppφ ⊂ Ω.

The most natural choice for Λm would be

〈Λm, φ〉 =

∫
Rd

φ(x)

|x|m
dx.

However, if m is too large then the integral does not converge at x = 0.

To fix this we modify Λm by subtracting sufficiently many terms in the Taylor expansion of the
test function.

Let η ∈ C∞c (Rd) satisfy η(x) = 1 on a neighborhood of the origin. For any N ∈ N we now consider
the integral

〈Λm,N , φ〉
def
=

∫
Rd

{
φ(x)− η(x)

∑
|α|≤N

xα

α!
Dαφ(0)

} dx

|x|m

The integrand satisfies∣∣∣∣∣∣
{
φ(x)− η(x)

∑
|α|≤N

xα

α!
Dαφ(0)

}
|x|−m

∣∣∣∣∣∣ ≤ C‖φ‖N+1|x|N+1−m.

Thus if N is large enough (N ≥ m−d) then the integral converges, so that Λm,N defines a tempered
distribution.

If the test function φ vanishes in any small neighborhood of the origin, then Dαφ(0) = 0 for all α.
Thus

〈Λm,N , φ〉 =

∫
Rd

φ(x)

|x|m
dx.

holds, and Λm,N coincides with |x|−m on Rd \ {0}.
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Discussion – Part B. Suppose such a tempered distribution Λ ∈ S′(R) exists. Then there is a
k ∈ N with |〈Λ, φ〉| ≤ C‖φ‖k, where the norm ‖φ‖k is as in part A of this problem. If we only
consider test functions that are supported in the interval (0, 1), then this would imply∣∣∣∣∫ 1

0
e1/|x|φ(x)dx

∣∣∣∣ ≤ C sup
0<x<1

|φ(k)(x)|.

We do not have to include the lower derivatives on the right, because for functions φ that are
supported in an interval of length 1 these are bounded by the derivative of order k.

Now choose one such test function with φ(x) ≥ 0, and consider φδ(x) = φ(x/δ), for small δ > 0.
Then ∫ 1

0
e1/xφδ(x)dx ≤ C sup

0<x<1
|φ(k)δ (x)|

for all δ ∈ (0, 1). On the left we get∫ 1

0
e1/xφδ(x)dx

x=δt
= δ

∫ 1

0
e1/(δt)φ(t)dt ≥ δe1/δ

∫ 1

0
φ(t)dt = Cδe1/δ.

On the right we get

C sup
0<x<1

|φ(k)δ (x)| = Cδ−k sup
0<t<1

|φ(k)(t)| = C ′δ−k.

The assumption that a distribution Λ exists that restricts to e1/x on R+ therefore leads us to the
conclusion that

Cδe1/δ ≤ C ′δ−k, i.e. δk+1e1/δ ≤ C ′′

for some constant C ′′ and for all δ ∈ (0, 1). This is a contradiction.

Problem 8. Show that there is a continuous real valued function on [0,1] that is not monotone on
any open interval (a, b) ⊂ [0, 1].

Discussion. There are (at least) two possible approaches: one can use an abstract Baire category
argument, or one can try to construct an explicit example of such a function.

Baire category approach. Let Vn ⊂ C([0, 1]) be the set of functions f such that for all k =
1, . . . , 2n − 1 one has

f
(2k

2n

)
> f

(2k + 1

2n

)
and f

(2k

2n

)
> f

(2k − 1

2n

)
Thus f ∈ Vn implies that f is not monotone on any interval

(
(2k − 1)2−n, (2k + 1)2−n

)
.

Clearly Vn is an open subset of C([0, 1]).

While Vn itself is not dense in C([0, 1]) we claim that Wn = ∪k≥nVk is dense. Once we have proved
that, Baire’s theorem implies that ∩∞n=1Wn is still dense in C([0, 1]), and thus not empty. There is
therefore some function f that lies in infinitely many Vn, and which is therefore not monotone on
any open interval in [0, 1].

To show that Wn is in fact dense, we consider any f ∈ C([0, 1]), and any ε > 0. Since f is uniformly
continuous we can find an integer N ≥ n such that

∀x, y : |x− y| ≤ 21−N =⇒ |f(x)− f(y)| ≤ ε
Consider

g(x) = f(x) + ε cos(2Nπx)

Then, writing xk = k2−N , we have

g(x2k)− g(x2k±1) = f(x2k)− f(x2k±1) + 2ε ≥ ε > 0.
10



It follows that g ∈ VN ⊂ Wn, while ‖f − g‖∞ = ε, thereby proving that Wn is indeed dense in
C([0, 1]).

An explicit construction. Instead of using the Baire category theorem, one could also try to
present a concrete example of a nowhere monotone function f .

A monotone continuous function is almost everywhere differentiable, so to find a nowhere monotone
function one could look for nowhere differentiable functions. There are several types of examples
of such functions. For example, a typical path of Brownian motion is nowhere differentiable (that
example would require one to first construct Brownian motion). The most classical example of a
nowhere differentiable continuous function is the one given by Weierstrass:

f(x) =
∞∑
n=0

an cos(πbnx).

where 0 < a < 1 and ab > 1. Under these hypotheses Weierstrass’ function is known to be nowhere
differentiable, but a detailed proof is not simple. We are asked to provided only one example, so
we allow ourselves to make a few extra assumptions on a and b along the way. We prove that the
function f above is nowhere monotone, at least if we assume b ∈ N is even and sufficiently large.

The guiding idea behind the following arguments is that at any length scale there is one term in
the series for f (the one with n = N for some suitably chosen N) that oscillates the most: all
previous terms (n < N) do not oscillate much because their derivative turns out to be small, and
all subsequent terms (n > N) are periodic with a very small period, so as long as we only evaluate
the function at points separated by multiples of this very small period, the terms with n > N will
actually be constant.

Write f as

f(x) =
∑
n<N

an cos(πbnx) + aN cos(πbNx) +
∑
n>N

an cos(πbnx) = P (x) +Q(x) +R(x).

We have

|P ′(x)| ≤
∑
n<N

π(ab)n <
π(ab)N

ab− 1
.

The tail sum R(x) is periodic with period 1
2b
−N−1.

If I ⊂ [0, 1] is any open interval, and N is any sufficently large integer, then we can find k such
that (2k ± 1)b−N ∈ I.

Periodicity of R(x) implies that

R
(
2kb−N

)
= R

(
(2k − 1)b−N

)
= R

(
(2k + 1)b−N

)
.

The derivative bound for P (x) implies∣∣P ((2k ± 1)b−N
)
− P

(
2kb−N

)∣∣ ≤ sup
x∈[0,1]

|P ′(x)| b−N ≤ πaN

ab− 1
.

The middle term Q(x) satisfies

Q
(
(2k + 1)b−N

)
−Q

(
2kb−N

)
= Q

(
(2k − 1)b−N

)
−Q

(
2kb−N

)
= −2aN .

Combining P , Q, R we get

f
(
(2k ± 1)b−N

)
− f

(
2kb−N

)
≤ −2aN +

π

ab− 1
aN .
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If we choose b so large that π/(ab− 1) < 2, then

f
(
(2k ± 1)b−N

)
− f

(
2kb−N

)
< 0

so that f is not be monotone on the interval ((2k − 1)b−N , (2k + 1)b−N ).

Problem 9. Let fn ∈ L2(R) be a sequence of functions with ‖fn‖2 ≤ 1 for all n ∈ N. Assume that
for each ε > 0, there exists Rε > 0 so that

∀n ∈ N
∫
|x|>R

|fn(x)|2dx+

∫
|ξ|>Rε

|f̂n(ξ)|2dξ < ε

Prove that {fn} has a subsequence that converges in the L2 norm.

Discussion. Let φ be a Schwartz function that is supported in {|x| ≤ 1} and has φ(0) = φ̂(0) = 1,
and define φN (x) = Nφ(Nx), N ∈ N.

Let N momentarily be fixed, and consider the functions fNn (x) := φ( xN )(fn∗φN (x)). Multiplication

by a Schwartz function maps H1 into itself, so

‖fNn ‖H1(R) ≤ CφN ‖fn ∗ φN‖H1(R).

The definition of H1(R) and the formula f̂ ∗ g = f̂ ĝ, then Hölder’s inequality, then rapid decay of

φ̂N and L2-boundedness of the sequence fn give us

‖fn ∗ φN‖H1(R) = ‖〈ξ〉φ̂N f̂n‖L2 ≤ ‖〈ξ〉φ̂N‖L∞‖fn‖L2 ≤ CφN ;

here 〈ξ〉 :=
√

1 + |ξ|2. In summary, fNn is a bounded sequence in H1 whose support is contained
in {|x| ≤ N}.
By Rellich, for each N , there exists a subsequence {fnj(N)} such that {fNnj(N)} converges in L2. By

proceeding iteratively, we may assume that {fnj(N)} is a subsequence of {fnj(N ′)} for each N ′ ≤ N .

Let nj := nj(j). Then for each N , {fNnj} converges in L2.

We claim that {fnj} converges in L2. By completeness of L2, it suffices to prove that {fnj} is
Cauchy. By the triangle inequality,

‖fnj − fnk‖L2 ≤ ‖fNnj − f
N
nk
‖2 + ‖fNnj − fnj‖2 + ‖fNnk − fnk‖2.

As {fNnj} is Cauchy for each N , it suffices to prove that for all ε > 0, there exists N = Nε such that

‖fNn − fn‖2 < ε, for all n. We compute

‖fNn − fn‖2 ≤ ‖φ( xN )(fn ∗ φn − fn)‖2 + ‖(1− φ( xN ))fn‖2
≤ ‖fn ∗ φn − fn‖2 + ‖(1− φ( xN ))fn‖2 = ‖(1− φ̂( ξN ))f̂n‖2 + ‖(1− φ( xN ))fn‖2.

Finally,

‖(1− φ( xN ))fn‖2 ≤ ‖(1− φ( xN ))fn‖L2({|x|<cεN}) + ‖(1− φ( xN ))fn‖L2({|x|>cεN})

≤ ‖1− φ(x)‖L∞({|x|<cε})‖fn‖L2 + ‖1− φ‖L∞‖fn‖L2({|x|>cεN}).

For cε sufficiently small, the first term is bounded by ε, by continuity and φ(0) = 1; for N = c−1ε Rε
(with Rε as in the hypothesis), the second term is also bounded by ε. Smallness of ‖(1− φ̂( ξN ))f̂n‖2
is proved in exactly the same way. This completes the proof that fnj is Cauchy in L2, and hence
that it is convergent.
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