
Homework #6 · 8 th week Math 240 Thusday October 31, 2013

1. Find the nonnegative integer a < 28 which is represented by the following
pairs

(a) (0, 0) (b) (1, 1)

(c) (2, 1) (d) (3, 5)

where each pair (κ, `) represents the system of congruences

a ≡ κ mod 4

a ≡ ` mod 7

}
.

Solution.

(a) a must satisfy
a ≡ 0 mod 4

a ≡ 0 mod 7

}
which obviously has a = 0 as solution. This solution is unique in the
given range 0 ≤ a < 28 by the Chinese rimender theorem.

(b) In this case we must consider the system

a ≡ 1 mod 4

a ≡ 1 mod 7

}
which, by the same reason as in (a) has solution a = 1.

(c) Now a must satisfy
a ≡ 2 mod 4

a ≡ 1 mod 7

}
.

Imitating the proof of the Chinese rimeinder theorem, a solution is
given by a = 4α+ 7β where

7β ≡ 2 mod 4 (1)

and

4α ≡ 1 mod 7. (2)

Since 7 ≡ 3 mod 4, (1) is equivalent to 3β ≡ 2 mod 4 and hence

β ≡
↑

9≡1 mod 4

9β ≡
↑

3β≡2 mod 4

3 · 2 = 6 ≡ 2 mod 4.

For (2) we have

α ≡
↑

8≡1 mod 7

8α ≡
↑

by (2)

2 mod 7.

Thus, taking α = 2 and β = 2 we have a = 4α + 7β = 22 (again, ac-
cording to the Chinese reminder theorem, this is the unique solution
in the range 0 ≤ a < 28).
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(d) Next we look at the system

a ≡ 3 mod 4

a ≡ 5 mod 7

}
.

Proceeding as in part (c) we look for a solution of the form a = 4α+
7β so that

7β ≡ 3 mod 4 (3)

and

4α ≡ 5 mod 7. (4)

As before, from (3) we have

β ≡ 3 · 3 = 9 ≡ 1 mod 4,

and from (4)
α ≡ 2 · 5 = 10 ≡ 3 mod 7.

This, with α = 3 and β = 1, gives a = 4α+ 7β = 19. �

2. Using Fermat’s little theorem show that if n is a positive integer, n7 ≡ n
mod 42.

Note: Fermat’s little theorem will be stated and proved next Tuesday in
class. It states that ap−1 ≡ 1 mod p for any prime p and any integer a so
that p - a. Equivalently ap ≡ a mod p for any integer a.

Solution. Note first that the given moduli 42 = 2 · 3 · 7 and that by Fermat’s
theorem

n7 = n ·
(
n2
)3 ≡ n · n3 = n4 =

(
n2
)2 ≡ n2 ≡ n mod 2,

n7 = n ·
(
n3
)2 ≡ n · n2 = n3 ≡ n mod 3,

and
n7 ≡ n mod 7.

This means that 2 | n7 − n, 3 | n7 − n and 7 | n7 − n which implies that
42 | n7 − n because 2, 3 and 7 are primes. This is the same as n7 ≡ n
mod 42 as we wanted. �
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3. Let m1,m2 > 1. Show that the system of linear congruences

x ≡ a mod m1

x ≡ b mod m2

}

has solutions for any integers a and b if, and only if, m1 and m2 are rela-
tively prime.

Solution. By the Chinese remainder theorem we only need to show that if
the given system has always solutions then m1 and m2 must be relatively
prime. To do so, note that if we can solve for a pair of given integers a and
b then{
x = a+ κm1

x = b+ `m2

⇒ b− a = κm1 − `m2 ⇒ gcd(m1,m2) | (b− a).

Since a and b can be chosen arbitrarily we conclude that gcd(m1,m2) = 1
(just take a = 0 and b = 1 for example). �

4. Let ϕ(m) =
{
1 ≤ k < m

/
gcd(k,m) = 1

}
be Euler’s function. Show that:

(a) For any prime p and any integer κ ≥ 1, ϕ (pκ) = pκ−1(p− 1).

(b) Use the multiplicative property of ϕ to prove that if m = pα1
1 · p

α2
2 ·

. . . · pαk

k is the prime factorization of m, then

ϕ(m) = m

(
1− 1

p1

)
·
(
1− 1

p2

)
· . . . ·

(
1− 1

pk

)
.

(c) Use (b) to show that, in particular, for any integer κ ≥ 1, ϕ (mκ) =
mκ−1ϕ(m).

Note: Recall that ϕ being multiplicative means that ϕ(n ·m) = ϕ(n) · ϕ(m)
if m,n ≥ 1 are relatively prime.

Solution.

(a) An integer 1 ≤ k ≤ pκ will not be relatiely prime to pκ if it is of the
form k = ` · p. The restriction for ` is then 1 ≤ ` ≤ pκ−1 which give
us pκ−1 such k′s. Therefore

ϕ (pκ) = pκ − pκ−1 = pκ−1(p− 1).
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(b) Since ϕ is multiplicative

ϕ(m) = ϕ (pα1
1 · p

α2
2 · . . . · p

αk

k ) = ϕ (pα1
1 ) · ϕ (pα2

2 ) · . . . · ϕ (pαk

k )

=
↑

by (a)

pα1−1
1 (p1 − 1) · pα2−1

2 (p2 − 1) · . . . · pαk−1
k (pk − 1)

= pα1
1

(
1− 1

p1

)
· pα2

2

(
1− 1

p2

)
· . . . · pαk

k

(
1− 1

pk

)
= pα1

1 · p
α2
2 · . . . · p

αk

k ·
(
1− 1

p1

)
·
(
1− 1

p2

)
· . . . ·

(
1− 1

pk

)
= m ·

(
1− 1

p1

)
·
(
1− 1

p2

)
· . . . ·

(
1− 1

pk

)
.

(c) Since mκ = pκα1
1 · pκα2

2 · . . . · pκαk

k is the prime factorization of mκ if
m = pα1

1 · p
α2
2 · . . . · p

αk

k is that of m, by (b) we have

ϕ (mκ) = mκ ·
(
1− 1

p1

)
·
(
1− 1

p2

)
· . . . ·

(
1− 1

pk

)
= mκ−1 ·m ·

(
1− 1

p1

)
·
(
1− 1

p2

)
· . . . ·

(
1− 1

pk

)
= mκ−1 · ϕ(m). �

5. Let p and q be two different primes, put m = pq and suppose that r ≡ 1
mod (p− 1) and r ≡ 1 mod (q − 1). Show that for any integer a,

ar ≡ a mod m.

Solution. Since r ≡ 1 mod (p − 1) there exists an integer κ such that
r = 1 + κ(p− 1). Hence, by Fermat’s little theorem, if p - a we have

ar = a1+κ(p−1) = a
(
ap−1

)κ
= a mod p,

and so p | (ar − a). Trivially p | (ar − a) when p | a and so p | (ar − a) for
any integer a. Likewise q | (ar − a) and since p and q are distinct primes
we conclude that m = pq | (ar − a). This means that ar ≡ a mod m as
was to be shown. �

Remark. The result in this exercise also holds if m = p1 · p2 · . . . · pk is the
product of k distinct primes and r ≡ 1 mod pi for all i = 1, 2 . . . , k. Note
now that exercise 2 follows from this with p1 = 2, p2 = 3 and p3 = 7.
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