
Homework #5 · 7 th week Math 240 Thursday October 24, 2013

1. Let a, b > 1 be integers and g : = gcd(a, b) its greatest common divisor. Show that
if a = g · qa and b = g · qb then qa and qb are relatively prime.

Solution. Since gcd(κ · a, κ · b) = κ · gcd(a, b) in particular, for κ = g we have

g = gcd(a, b) = gcd(g · qa, g · qb) = g · gcd(qa, qb) ⇒ gcd(qa, qb) = 1

that is, qa and qb are relatively prime. �

2. Show that for any pair of non negative integers a and b

a · b = gcd(a, b) · lcm(a, b).

Solution. Suppose first that a and b are relatively prime and let m be any multiple of
both a and b. Then, for some integers qa and qb, m = a · qa = b · qb and so, a | b · qb.
Since a and b are relatively prime it follows that a | qb, i.e., qb = κ·a for some integer
κ which implies that m = a · b · κ and hence a · b | m. This means that a · b being
a multiple of a and b, is is a divisor of any its common multiples. Therefore, by the
very definition of the least common multiple, it follows that a · b = lcm(a, b).
Finally, if a and b were not relatively prime, writing a = g · qa and b = g · qb as in
exercise 1, since qa and qb are relatively prime we have for we just have proved

qa · qb = lcm(qa, qb)

⇓
a · b = (g · qa)(g · qb)
⇓

a · b = g2 · lcm(qa, qb)

⇓
a · b = g · lcm(g · qa, g · qb)
⇓

a · b = g · lcm(a, b)

m
a · b = gcd(a, b) · lcm(a, b)

since as in exercise 1, g = gcd(a, b). �
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3. Find gcd(1000, 625)

(a) using the Euclidean Algorithm
and

(b) by factorization.

Solution.

(a) Successive divisions give the remainders

1000 = 625 · 1 + 375

625 = 375 · 1 + 250

375 = 250 · 1 + 125

250 = 125 · 2.

This means that the last non zero reminder is 125 and hence

gcd(1000, 625) = 125.

(b) Since the prime factorizations of 1000 and 625 are

1000 = 23 · 53

and

625 = 54

we find that gcd(1000, 625) = 20 · 53 = 53 = 125. �

4. (a) If p is prime, show that the largest power of p dividing n! is

logp n∑
j=1

⌊
n

pj

⌋
=

⌊
n

p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ . . .

or
n− σp(n)
p− 1

where σp(n) denotes the sum of the base p digits of n.

(b) 1000! has a lot of final zero digits. Use (a) to find how many are there.
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Solution.

(a) There are

#
{
κ
/
1 ≤ κ, and κp ≤ n

}
= #

{
κ
/

1 ≤ κ ≤ n

p

}
=

⌊
n

p

⌋
multiples of p which are ≤ n. In the same way, for j = 1, 2, . . . there are

#
{
κ
/
1 ≤ κ, and κpj ≤ n

}
= #

{
κ
/

1 ≤ κ ≤ n

pj

}
=

⌊
n

pj

⌋
multiples of pj which are ≤ n. Therefore, the largest power of p that divides
n! is ⌊

n

p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ . . .

Note that this sum ends up as soon as pj > n, i.e., when j > logp n.
Alternatively, if n = amp

m+am−1p
m−1+ · · ·+a1p+a0 is the base p expansion

of n then, for any j = 1, 2, . . . ,m, we have

n

pj
= amp

m−j + am−1p
m−j−1 + · · ·+ aj+1p+ aj +

aj−1

p
+ · · ·+ a1

pj−1
+
a0
pj
,

but since 0 ≤ ai ≤ p− 1,

aj−1

p
+ · · ·+ a1

pj−1
+
a0
pj
≤ (p− 1)

(
1

p
+ · · ·+ 1

pj−1
+

1

pj

)

= (p− 1)

 1
p

(
1− 1

pj

)
1− 1

p

 = 1− 1

pj
< 1

we see that ⌊
n

pj

⌋
= amp

m−j + am−1p
m−j−1 + · · ·+ aj+1p+ aj

and hence

m∑
j=1

⌊
n

pj

⌋
= amp

m−1 + am−1p
m−2 + · · ·+ a2p+ a1

+ amp
m−2 + am−1p

m−3 + · · ·+ a3p+ a2

...

+ amp+ am−1

+ am
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= a1 + a2(1 + p) + a3(1 + p+ p2) + · · ·+ am
(
1 + p+ · · ·+ pm−1

)
=
a1(p− 1) + a2(p

2 − 1) + a3(p
3 − 1) + · · ·+ am(pm − 1)

p− 1

=

(
a1p+ a2p

2 + a3p
3 + · · ·+ amp

m
)
− (a1 + a2 + a3 + · · ·+ am)

p− 1

=
n− σp(n)
p− 1

.

(b) If sp(n) denotes either of the quantities appearing in part (a), the prime de-
composition of n! is

n! =
∏
p≤n

p prime

psp(n).

Since the number of zeros at the end of n! coincides with the largest power of
10 = 2 · 5 dividing n! and s5(n) < s2(n) we see that the total of such zeros is
s5(n). In particular, when n = 1000

s5(1000) =

⌊
1000

5

⌋
+

⌊
1000

25

⌋
+

⌊
1000

125

⌋
+

⌊
1000

625

⌋
= 200 + 40 + 8 + 1 = 249

and 1000! ends with 249 zeros. �

5. (a) Given two non negative relatively prime integers a an b, show that if x0, y0 is a
particular solution of the Diophantine equation ax+ by = m then, any other
solution is of the form {

x = x0 + bκ

y = y0 − aκ

for some integer κ.

(b) Use (a) to describe the solution set for the general linear Diophantine equa-
tion ax+ by = m when a and b are arbitrary non negative integers.

Solution.

(a) If x0, y0 satisfies ax0 + by0 = m and x, y is any other solution of this equation,
i.e., ax+ by = m, by subtracting

−a(x− x0) = b(y − y0).

This implies that b | a(x − x0) and hence b | (x − x0) because a and b are
relatively prime. This means that for some integer κ, x = x0 + bκ. Also, from
the above relation it follows that b(y − y0) = −abκ and so y = y0 − aκ.
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(b) Let x0, y0 be a solution of the general equation ax+ by = m. We know that if
g : = gcd(a, b) then, g | m so if, as in exercise 1, we write a = gqa and b = gqb,
any solution x, y to the equation will satisfy

aax+ qby =
m

g
∈ Z.

Since qa and qb are relatively prime (exercise 1), from part (a){
x = x0 + κqb

y = y0 − κqa

for some integer κ.

6. Solve
x ≡ 1 mod 3

x ≡ 2 mod 5

}

Solution. From the first equation x = 1 + 3κ and from the second x = 2 + 5` form
some integers κ and `. This means that for x to be a solution of the given system,
κ and ` must satisfy 1 + 3κ = 2 + 5` ⇔ 3κ = 1 + 5`. Since 3 and 5 are relatively
prime and κ0 = 2, `0 = 1 is a particular solution to this last equation, we see that its
solutions are describe (exercise 5) by{

κ = 2 + 5υ

` = 1 + 3υ

where υ ∈ Z is an arbitrary integer. Thus, returning to the expression for x in terms
if κ (or `) we find that the general solution to the given system of congruences is

x = 7 + 15υ

with υ ∈ Z an arbitrary integer.
In other words (recall the Chinese reminder theorem),

x ≡ 1 mod 3

x ≡ 2 mod 5

}
⇔ x ≡ 7 mod 15.

�
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